3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Behavioral Pharmacology of Neuropeptides: Oxytocin 

      Oxytocin Modulation of Neural Circuits

      other

      Read this book at

      Publisher
      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Social reward requires coordinated activity of accumbens oxytocin and 5HT

          Social behaviors in species as diverse as honey bees and humans promote group survival but often come at some cost to the individual. Although reinforcement of adaptive social interactions is ostensibly required for the evolutionary persistence of these behaviors, the neural mechanisms by which social reward is encoded by the brain are largely unknown. Here we demonstrate that in mice oxytocin (OT) acts as a social reinforcement signal within the nucleus accumbens (NAc) core, where it elicits a presynaptically expressed long-term depression of excitatory synaptic transmission in medium spiny neurons. Although the NAc receives OT receptor-containing inputs from several brain regions, genetic deletion of these receptors specifically from dorsal raphe nucleus, which provides serotonergic (5-HT) innervation to the NAc, abolishes the reinforcing properties of social interaction. Furthermore, OT-induced synaptic plasticity requires activation of NAc 5-HT1b receptors, the blockade of which prevents social reward. These results demonstrate that the rewarding properties of social interaction in mice require the coordinated activity of OT and 5-HT in the NAc, a mechanistic insight with implications for understanding the pathogenesis of social dysfunction in neuropsychiatric disorders such as autism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxytocin Enables Maternal Behavior by Balancing Cortical Inhibition

            Oxytocin is important for social interactions and maternal behavior. However, little is known about when, where, and how oxytocin modulates neural circuits to improve social cognition. Here we show how oxytocin enables pup retrieval behavior in female mice by enhancing auditory cortical pup call responses. Retrieval behavior required left but not right auditory cortex, was accelerated by oxytocin in left auditory cortex, and oxytocin receptors were preferentially expressed in left auditory cortex. Neural responses to pup calls were lateralized, with co-tuned and temporally-precise excitatory and inhibitory responses in left cortex of maternal but not pup-naive adults. Finally, pairing calls with oxytocin enhanced responses by balancing the magnitude and timing of inhibition with excitation. Our results describe fundamental synaptic mechanisms by which oxytocin increases the salience of acoustic social stimuli. Furthermore, oxytocin-induced plasticity provides a biological basis for lateralization of auditory cortical processing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice.

              The oxytocin receptor (OXTR) and its ligand, oxytocin (OXT), regulate reproductive physiology (i.e., parturition and lactation) and sociosexual behaviors. To define the essential functions of OXTR, we generated mice with a null mutation in the Oxtr gene (Oxtr(-/-)) and compared them with OXT-deficient (Oxt(-/-)) mice. Oxtr(-/-) mice were viable and had no obvious deficits in fertility or reproductive behavior. Oxtr(-/-) dams exhibited normal parturition but demonstrated defects in lactation and maternal nurturing. Infant Oxtr(-/-) males emitted fewer ultrasonic vocalizations than wild-type littermates in response to social isolation. Adult Oxtr(-/-) males also showed deficits in social discrimination and elevated aggressive behavior. Ligand Oxt(-/-) males from Oxt(-/-) dams, but not from Oxt(+/-) dams, showed similar high levels of aggression. These data suggest a developmental role for the OXT/OXTR system in shaping adult aggressive behavior. Our studies demonstrate that OXTR plays a critical role in regulating several aspects of social behavior and may have important implications for developmental psychiatric disorders characterized by deficits in social behavior.
                Bookmark

                Author and book information

                Book Chapter
                2017
                September 02 2017
                : 31-53
                10.1007/7854_2017_7
                01b236b1-1750-44d3-b209-39a17853aad6
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,125

                Cited by8