3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Kinins 

      7 The role of the renal kallikrein-kinin system in physiology and pathology

      edited_book

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Tubulointerstitial changes as a major determinant in the progression of renal damage.

          Tubulointerstitial injury is an invariant finding in the chronically diseased kidney, irrespective of the type of disease or the compartment in which the disease originates. Such histologic changes are functionally significant in that scores for such damage, rather than glomerular injury, correlate with decline of renal function. This review summarizes (1) clinical evidence attesting to tubulointerstitial changes as an index of functional impairment, (2) mechanisms by which tubulointerstitial injury impairs renal function, and (3) interactions of pathologic processes in the vascular, glomerular, tubular, and interstitial compartments that culminate in tubulointerstitial injury. This report concludes with a review of interstitial fibrosis, a pathologic process regarded as an irreversible outcome from tubulointerstitial injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular basis of renal fibrosis.

            All progressive renal diseases are the consequence of a process of destructive fibrosis. This review will focus on tubulointerstitial fibrosis, the pathophysiology of which will be divided into four arbitrary phases. First is the cellular activation and injury phase. The tubules are activated, the peritubular capillary endothelium facilitates migration of mononuclear cells into the interstitium where they mature into macrophages, and myofibroblasts/activated fibroblasts begin to populate the interstitium. Each of these cells releases soluble products that contribute to ongoing inflammation and ultimately fibrosis. The second phase, the fibrogenic signaling phase, is characterized by the release of soluble factors that have fibrosis-promoting effects. Several growth factors and cytokines have been implicated, with primary roles suggested for transforming growth factor-beta, connective tissue growth factor, angiotensin II and endothelin-1. Additional factors may participate including platelet-derived growth factor, basic fibroblast growth factor, tumor necrosis factor-alpha and interleukin-1, while interferon-gamma and hepatocyte growth factor may elicit antifibrotic responses. Third is the fibrogenic phase when matrix proteins, both normal and novel to the renal interstitium, begin to accumulate. During this time both increased matrix protein synthesis and impaired matrix turnover are evident. The latter is due to the renal production of protease inhibitors such as the tissue inhibitors of metalloproteinases and plasminogen activator inhibitors which inactivate the renal proteases that normally regulate matrix turnover. Fourth is the phase of renal destruction, the ultimate sequel to excessive matrix accumulation. During this time the tubules and peritubular capillaries are obliterated. The number of intact nephrons progressively declines resulting in a continuous reduction in glomerular filtration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of tubulointerstitial fibrosis.

              Tubulointerstitial fibrosis is the final common pathway to end-stage renal disease. Understanding the mechanisms of tubulointerstitial fibrosis is essential in establishing novel therapeutic strategies for the prevention or arrest of progressive kidney diseases. The present review focuses on a newly proposed mechanism of tubulointerstitial fibrosis, one that emphasizes the roles of epithelial-mesenchymal transition and cellular activation. Among the cells that accumulate in the renal interstitium, fibroblasts are the principal effectors mediating tubulointerstitial fibrosis. By contrast, the phagocytosis of extracellular matrix and apoptotic cells by macrophages may actually exert a beneficial effect. Interstitial fibroblasts are more heterogeneous than expected, and during renal fibrosis new fibroblasts are derived mainly through epithelial-mesenchymal transition. The intracellular signaling pathways leading to initiation of epithelial-mesenchymal transition remain largely unknown, though recent studies have identified beta-catenin and Smad3 activation of lymphoid enhancer factor, integrin-linked kinase, and small GTPases and mitogen-activated protein kinases as key components. Transforming growth factor-beta is believed to be a critical fibrogenic factor, but recent studies have also focused on transforming growth factor-beta independent pathways as mechanisms of tubulointerstitial fibrosis. As the mechanisms underlying tubulointerstitial fibrosis leading to epithelial-mesenchymal transition have been identified, so have cytokines that efficiently antagonize renal fibrosis, particularly bone morphogenic protein-7 and hepatocyte growth factor. In combination with traditional angiotensin converting enzyme inhibitors, newly identified cytokines may eventually form the basis for new therapeutic strategies aimed at inhibiting the progression of renal disease.
                Bookmark

                Author and book information

                Book Chapter
                January 16 2011
                10.1515/9783110252354.103
                0a783659-611f-48ae-bebf-96a43cf208fe
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,403