12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Metalloproteins 

      Transferrins

      other
      Palgrave Macmillan UK

      Read this book at

      Publisher
      Buy book
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references567

          • Record: found
          • Abstract: found
          • Article: not found

          Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor.

          The fate of the transferrin receptor during in vitro maturation of sheep reticulocytes has been followed using FITC- and 125I-labeled anti-transferrin-receptor antibodies. Vesicles containing peptides that comigrate with the transferrin receptor on polyacrylamide gels are released during incubation of sheep reticulocytes, tagged with anti-transferrin-receptor antibodies. Vesicle formation does not require the presence of the anti-transferrin-receptor antibodies. Using 125I-surface-labeled reticulocytes, it can be shown that the 125I-labeled material which is released is retained by an immunoaffinity column of the anti-transferrin-receptor antibody. Using reticulocytes tagged with 125I-labeled anti-transferrin-receptor antibodies to follow the formation of vesicles, it can be shown that at 0 degree C or in phosphate-buffered saline the rate of vesicle release is less than that at 37 degrees C in culture medium. There is selective externalization of the antibody-receptor complex since few other membrane proteins are found in the externalized vesicles. The anti-transferrin-receptor antibodies cause redistribution of the receptor into patches that do not appear to be required for vesicle formation.
            • Record: found
            • Abstract: found
            • Article: not found

            Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes

            At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.
              • Record: found
              • Abstract: found
              • Article: not found

              Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents.

              A quantitative method is described for the measurement of intralysosomal pH in living cells. Fluorescein isothiocyanate-labeled dextran (FD) is endocytized and accumulates in lysosomes where it remains without apparent degradation. The fluorescence spectrum of this compound changes with pH in the range 4-7 and is not seriously affected by FD concentration, ionic strength, or protein concentration. Living cells on coverslips are mounted in a spectrofluorometer cell and can be perfused with various media. The normal pH inside macrophage lysosomes seems to be 4.7-4.8, although it can drop transiently as low as 4.5. Exposure of the cells to various weak bases and to acidic potassium ionophores causes the pH to increase. The changes in pH are much more rapid than is the intralysosomal accumulation of the weak bases. Inhibitors of glycolysis (2-deoxyglucose) and of oxidative phosphorylation (cyanide or azide) added together, but not separately, cause the intralysosomal pH to increase. These results provide evidence for the existence of an active proton accumulation mechanism in the lysosomal membrane and support the theory of lysosomal accumulation of weak bases by proton trapping.

                Author and book information

                Book Chapter
                1985
                : 183-262
                10.1007/978-1-349-06375-8_5
                0af6cffc-54f0-4990-b62f-a73e5b6e4215
                History

                Comments

                Comment on this book