2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Biology of Stress in Fish - Fish Physiology 

      Stress Management and Welfare

      edited_book
        , ,
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references250

          • Record: found
          • Abstract: found
          • Article: not found

          Stress, Adaptation, and Disease: Allostasis and Allostatic Load

          Adaptation in the face of potentially stressful challenges involves activation of neural, neuroendocrine and neuroendocrine-immune mechanisms. This has been called "allostasis" or "stability through change" by Sterling and Eyer (Fisher S., Reason J. (eds): Handbook of Life Stress, Cognition and Health. J. Wiley Ltd. 1988, p. 631), and allostasis is an essential component of maintaining homeostasis. When these adaptive systems are turned on and turned off again efficiently and not too frequently, the body is able to cope effectively with challenges that it might not otherwise survive. However, there are a number of circumstances in which allostatic systems may either be overstimulated or not perform normally, and this condition has been termed "allostatic load" or the price of adaptation (McEwen and Stellar, Arch. Int. Med. 1993; 153: 2093.). Allostatic load can lead to disease over long periods. Types of allostatic load include (1) frequent activation of allostatic systems; (2) failure to shut off allostatic activity after stress; (3) inadequate response of allostatic systems leading to elevated activity of other, normally counter-regulated allostatic systems after stress. Examples will be given for each type of allostatic load from research pertaining to autonomic, CNS, neuroendocrine, and immune system activity. The relationship of allostatic load to genetic and developmental predispositions to disease is also considered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The stress response in fish.

            The stress response in teleost fish shows many similarities to that of the terrestrial vertebrates. These concern the principal messengers of the brain-sympathetic-chromaffin cell axis (equivalent of the brain-sympathetic-adrenal medulla axis) and the brain-pituitary-interrenal axis (equivalent of the brain-pituitary-adrenal axis), as well as their functions, involving stimulation of oxygen uptake and transfer, mobilization of energy substrates, reallocation of energy away from growth and reproduction, and mainly suppressive effects on immune functions. There is also growing evidence for intensive interaction between the neuroendocrine system and the immune system in fish. Conspicuous differences, however, are present, and these are primarily related to the aquatic environment of fishes. For example, stressors increase the permeability of the surface epithelia, including the gills, to water and ions, and thus induce systemic hydromineral disturbances. High circulating catecholamine levels as well as structural damage to the gills and perhaps the skin are prime causal factors. This is associated with increased cellular turnover in these organs. In fish, cortisol combines glucocorticoid and mineralocorticoid actions, with the latter being essential for the restoration of hydromineral homeostasis, in concert with hormones such as prolactin (in freshwater) and growth hormone (in seawater). Toxic stressors are part of the stress literature in fish more so than in mammals. This is mainly related to the fact that fish are exposed to aquatic pollutants via the extensive and delicate respiratory surface of the gills and, in seawater, also via drinking. The high bioavailability of many chemicals in water is an additional factor. Together with the variety of highly sensitive perceptive mechanisms in the integument, this may explain why so many pollutants evoke an integrated stress response in fish in addition to their toxic effects at the cell and tissue levels. Exposure to chemicals may also directly compromise the stress response by interfering with specific neuroendocrine control mechanisms. Because hydromineral disturbance is inherent to stress in fish, external factors such as water pH, mineral composition, and ionic calcium levels have a significant impact on stressor intensity. Although the species studied comprise a small and nonrepresentative sample of the almost 20,000 known teleost species, there are many indications that the stress response is variable and flexible in fish, in line with the great diversity of adaptations that enable these animals to live in a large variety of aquatic habitats.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The concept of allostasis in biology and biomedicine

                Bookmark

                Author and book information

                Book Chapter
                2016
                : 463-539
                10.1016/B978-0-12-802728-8.00012-6
                12610c1f-0e75-4fd3-b104-c03d4e5c4efe
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,946

                Cited by17