7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Fluorescence In Situ Hybridization (FISH) 

      FISH with and Without COT1 DNA

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer.

          A version of the polymerase chain reaction (PCR), termed degenerate oligonucleotide-primed PCR (DOP-PCR), which employs oligonucleotides of partially degenerate sequence, has been developed for genome mapping studies. This degeneracy, together with a PCR protocol utilizing a low initial annealing temperature, ensures priming from multiple (e.g., approximately 10(6) in human) evenly dispersed sites within a given genome. Furthermore, as efficient amplification is achieved from the genomes of all species tested using the same primer, the method appears to be species-independent. Thus, for the general amplification of target DNA, DOP-PCR has advantages over interspersed repetitive sequence PCR (IRS-PCR), which relies on the appropriate positioning of species-specific repeat elements. In conjunction with chromosome flow sorting, DOP-PCR has been applied to the characterization of abnormal chromosomes and also to the cloning of new markers for specific chromosome regions. DOP-PCR therefore represents a rapid, efficient, and species-independent technique for general DNA amplification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries.

            A method of in situ hybridization for visualizing individual human chromosomes from pter to qter, both in metaphase spreads and interphase nuclei, is reported. DNA inserts from a single chromosomal library are labeled with biotin and partially preannealed with a titrated amount of total human genomic DNA prior to hybridization with cellular or chromosomal preparations. The cross-hybridization of repetitive sequences to nontargeted chromosomes can be markedly suppressed under appropriate preannealing conditions. The remaining single-stranded DNA is hybridized to specimens of interest and detected with fluorescent or enzyme-labeled avidin conjugates following post-hybridization washes. DNA inserts from recombinant libraries for chromosomes 1, 4, 7, 8, 13, 14, 18, 20, 21, 22, and X were assessed for their ability to decorate specifically their cognate chromosome; most libraries proved to be highly specific. Quantitative densitometric analyses indicated that the ratio of specific to nonspecific hybridization signal under optimal preannealing conditions was at least 8:1. Interphase nuclei showed a cohesive territorial organization of chromosomal domains, and laser-scanning confocal fluorescence microscopy was used to aid the 3-D visualization of these domains. This method should be useful for both karyotypic studies and for the analysis of chromosome topography in interphase cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps.

              Cross-species reciprocal chromosome painting was used to delineate homologous chromosomal segments between domestic dog, red fox, and human. Whole sets of chromosome-specific painting probes for the red fox and dog were made by PCR amplification of flow-sorted chromosomes from established cell cultures. Based on their hybridization patterns, a complete comparative chromosome map of the three species has been built. Thirty-nine of the 44 synteny groups from the published radiation hybrid map and 33 of the 40 linkage groups in the linkage map of the dog have been assigned to specific chromosomes by fluorescence in situ hybridization and PCR-based genotyping. Each canine chromosome has at least one DNA marker assigned to it. The human-canid map shows that the canid karyotypes are among the most extensively rearranged karyotypes in mammals. Twenty-two human autosomal paints delineated 73 homologous regions on 38 canine autosomes, while paints from 38 dog autosomes detected 90 homologous segments in the human genome. Of the 22 human autosomes, only the syntenies of three chromosomes (14, 20, and 21) have been maintained intact in the canid genome. The dog-fox map and DAPI banding comparison demonstrate that the remarkable karyotype differences between fox (2n = 34 + 0-8 Bs) and dog (2n = 78) are due to 26 chromosomal fusion events and 4 fission events. It is proposed that the more easily karyotyped fox chromosomes can be used as a common reference and control system for future gene mapping in the DogMap project and CGH analysis of canine tumor DNA. Copyright 1999 Academic Press.
                Bookmark

                Author and book information

                Book Chapter
                2017
                October 18 2016
                : 123-133
                10.1007/978-3-662-52959-1_11
                1c03f258-2d92-4e94-8500-718c7c545098
                History

                Comments

                Comment on this book