3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 

      The Dynamic Measurements of Regional Brain Activity for Resting-State fMRI: d-ALFF, d-fALFF and d-ReHo

      other
      , , ,
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Electrophysiological signatures of resting state networks in the human brain.

          Functional neuroimaging and electrophysiological studies have documented a dynamic baseline of intrinsic (not stimulus- or task-evoked) brain activity during resting wakefulness. This baseline is characterized by slow (<0.1 Hz) fluctuations of functional imaging signals that are topographically organized in discrete brain networks, and by much faster (1-80 Hz) electrical oscillations. To investigate the relationship between hemodynamic and electrical oscillations, we have adopted a completely data-driven approach that combines information from simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Using independent component analysis on the fMRI data, we identified six widely distributed resting state networks. The blood oxygenation level-dependent signal fluctuations associated with each network were correlated with the EEG power variations of delta, theta, alpha, beta, and gamma rhythms. Each functional network was characterized by a specific electrophysiological signature that involved the combination of different brain rhythms. Moreover, the joint EEG/fMRI analysis afforded a finer physiological fractionation of brain networks in the resting human brain. This result supports for the first time in humans the coalescence of several brain rhythms within large-scale brain networks as suggested by biophysical studies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?

              During the last several years, the focus of research on resting-state functional magnetic resonance imaging (fMRI) has shifted from the analysis of functional connectivity averaged over the duration of scanning sessions to the analysis of changes of functional connectivity within sessions. Although several studies have reported the presence of dynamic functional connectivity (dFC), statistical assessment of the results is not always carried out in a sound way and, in some studies, is even omitted. In this study, we explain why appropriate statistical tests are needed to detect dFC, we describe how they can be carried out and how to assess the performance of dFC measures, and we illustrate the methodology using spontaneous blood-oxygen level-dependent (BOLD) fMRI recordings of macaque monkeys under general anesthesia and in human subjects under resting-state conditions. We mainly focus on sliding-window correlations since these are most widely used in assessing dFC, but also consider a recently proposed non-linear measure. The simulations and methodology, however, are general and can be applied to any measure. The results are twofold. First, through simulations, we show that in typical resting-state sessions of 10 min, it is almost impossible to detect dFC using sliding-window correlations. This prediction is validated by both the macaque and the human data: in none of the individual recording sessions was evidence for dFC found. Second, detection power can be considerably increased by session- or subject-averaging of the measures. In doing so, we found that most of the functional connections are in fact dynamic. With this study, we hope to raise awareness of the statistical pitfalls in the assessment of dFC and how they can be avoided by using appropriate statistical methods.
                Bookmark

                Author and book information

                Book Chapter
                2018
                September 13 2018
                : 190-197
                10.1007/978-3-030-00931-1_22
                1de5112c-9524-4aa1-9961-25ce6d3089b5
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,761

                Cited by2