55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Book Chapter: found
      Is Open Access
      Biomineralization: From Molecular and Nano-structural Analyses to Environmental Science 

      Preparation of Random and Aligned Polycaprolactone Fiber as Template for Classical Calcium Oxalate Through Electrocrystallization

      other
      , ,
      Springer Singapore

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Recent advancements in electrospinning design for tissue engineering applications: A review.

          Electrospinning, a technique used to fabricate fibrous scaffolds, has gained popularity in recent years as a method to produce tissue engineered grafts with architectural similarities to the extracellular matrix. Beyond its versatility in material selection, electrospinning also provides many tools to tune the fiber morphology and scaffold geometry. Recent efforts have focused on extending the capabilities of electrospinning to produce scaffolds that better recapitulate tissue properties and enhance regeneration. This review highlights these advancements by providing an overview of the processing variables and setups used to modulate scaffold architecture, discussing strategies to improve cellular infiltration and guide cell behavior, and providing a summary of electrospinning applications in tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2892-2905, 2017.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Chemistry of Form.

            The emergence of complex form in living and nonliving systems remains a deep question for scientists attempting to understand the origins and development of shape and structure. In recent years, biologists and physicists have made significant advances in explaining fundamental problems in fields such as morphogenesis and pattern formation. Chemists, on the other hand, are only just beginning to contemplate the possibility of preparing manmade materials with lifelike form. This review traces a route to the direct synthesis of inorganic structures with biomimetic form, beginning from an understanding of crystal morphology and biomineralization. The equilibrium form of crystals can be modified by surface-active additives but only within limits dictated by the symmetry of the unit cell. In contrast, biological minerals, such as shells, bones, and teeth, are distinguished by a complexity of form that bears little resemblance to the underlying order of their inorganic crystals. By understanding the constructional processes that give rise to the inorganic structures of life it should be possible to develop a chemistry of form in the laboratory. For example, complex small-scale inorganic architectures are produced at room temperature by undertaking precipitation reactions in self-assembled organic media, such as surfactant micelles, block copolymer aggregates and microemulsion droplets. Unusual inorganic forms emerge when these reaction fields are subjected to instability thresholds and synthesis and self-assembly can be coupled to produce materials with higher-order organization. Like their biological counterparts, these hard inorganic structures represent new forms of organized matter which originate from soft chemistry.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Introduction: Biomineralization.

                Bookmark

                Author and book information

                Book Chapter
                2018
                October 10 2018
                : 241-248
                10.1007/978-981-13-1002-7_25
                3e2df1ee-dcd8-47f0-973b-e553f58711aa
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,409