1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found

      Optogenetic Sensors for Monitoring Intracellular Chloride

      , ,

      Springer Japan

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 124

          • Record: found
          • Abstract: not found
          • Article: not found

          Interneurons of the hippocampus.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin.

            Important Ca2+ signals in the cytosol and organelles are often extremely localized and hard to measure. To overcome this problem we have constructed new fluorescent indicators for Ca2+ that are genetically encoded without cofactors and are targetable to specific intracellular locations. We have dubbed these fluorescent indicators 'cameleons'. They consist of tandem fusions of a blue- or cyan-emitting mutant of the green fluorescent protein (GFP), calmodulin, the calmodulin-binding peptide M13, and an enhanced green- or yellow-emitting GFP. Binding of Ca2+ makes calmodulin wrap around the M13 domain, increasing the fluorescence resonance energy transfer (FRET) between the flanking GFPs. Calmodulin mutations can tune the Ca2+ affinities to measure free Ca2+ concentrations in the range 10(-8) to 10(-2) M. We have visualized free Ca2+ dynamics in the cytosol, nucleus and endoplasmic reticulum of single HeLa cells transfected with complementary DNAs encoding chimaeras bearing appropriate localization signals. Ca2+ concentration in the endoplasmic reticulum of individual cells ranged from 60 to 400 microM at rest, and 1 to 50 microM after Ca2+ mobilization. FRET is also an indicator of the reversible intermolecular association of cyan-GFP-labelled calmodulin with yellow-GFP-labelled M13. Thus FRET between GFP mutants can monitor localized Ca2+ signals and protein heterodimerization in individual live cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain.

              Modern pain-control theory predicts that a loss of inhibition (disinhibition) in the dorsal horn of the spinal cord is a crucial substrate for chronic pain syndromes. However, the nature of the mechanisms that underlie such disinhibition has remained controversial. Here we present evidence for a novel mechanism of disinhibition following peripheral nerve injury. It involves a trans-synaptic reduction in the expression of the potassium-chloride exporter KCC2, and the consequent disruption of anion homeostasis in neurons of lamina I of the superficial dorsal horn, one of the main spinal nociceptive output pathways. In our experiments, the resulting shift in the transmembrane anion gradient caused normally inhibitory anionic synaptic currents to be excitatory, substantially driving up the net excitability of lamina I neurons. Local blockade or knock-down of the spinal KCC2 exporter in intact rats markedly reduced the nociceptive threshold, confirming that the reported disruption of anion homeostasis in lamina I neurons was sufficient to cause neuropathic pain.
                Bookmark

                Author and book information

                Book
                978-4-431-55515-5
                978-4-431-55516-2
                2015
                10.1007/978-4-431-55516-2
                Book Chapter
                2015
                : 159-183
                10.1007/978-4-431-55516-2_11

                Comments

                Comment on this book

                Book chapters

                Similar content 2,482

                Cited by 1