18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found

      New Light on Aerobic Anoxygenic Phototrophs

      other
      ,
      Springer Netherlands

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Cultivation of the ubiquitous SAR11 marine bacterioplankton clade.

          The alpha-proteobacterial lineage that contains SAR11 and related ribosomal RNA gene clones was among the first groups of organisms to be identified when cultivation-independent approaches based on rRNA gene cloning and sequencing were applied to survey microbial diversity in natural ecosystems. This group accounts for 26% of all ribosomal RNA genes that have been identified in sea water and has been found in nearly every pelagic marine bacterioplankton community studied by these methods. The SAR11 clade represents a pervasive problem in microbiology: despite its ubiquity, it has defied cultivation efforts. Genetic evidence suggests that diverse uncultivated microbial taxa dominate most natural ecosystems, which has prompted widespread efforts to elucidate the geochemical activities of these organisms without the benefit of cultures for study. Here we report the isolation of representatives of the SAR11 clade. Eighteen cultures were initially obtained by means of high-throughput procedures for isolating cell cultures through the dilution of natural microbial communities into very low nutrient media. Eleven of these cultures have been successfully passaged and cryopreserved for future study. The volume of these cells, about 0.01 micro m(3), places them among the smallest free-living cells in culture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Environmental biology of the marine Roseobacter lineage.

            The Roseobacter lineage is a phylogenetically coherent, physiologically heterogeneous group of alpha-Proteobacteria comprising up to 25% of marine microbial communities, especially in coastal and polar oceans, and it is the only lineage in which cultivated bacteria are closely related to environmental clones. Currently 41 subclusters are described, covering all major marine ecological niches (seawater, algal blooms, microbial mats, sediments, sea ice, marine invertebrates). Members of the Roseobacter lineage play an important role for the global carbon and sulfur cycle and the climate, since they have the trait of aerobic anoxygenic photosynthesis, oxidize the greenhouse gas carbon monoxide, and produce the climate-relevant gas dimethylsulfide through the degradation of algal osmolytes. Production of bioactive metabolites and quorum-sensing-regulated control of gene expression mediate their success in complex communities. Studies of representative isolates in culture, whole-genome sequencing, e.g., of Silicibacter pomeroyi, and the analysis of marine metagenome libraries have started to reveal the environmental biology of this important marine group.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris.

              Rhodopseudomonas palustris is among the most metabolically versatile bacteria known. It uses light, inorganic compounds, or organic compounds, for energy. It acquires carbon from many types of green plant-derived compounds or by carbon dioxide fixation, and it fixes nitrogen. Here we describe the genome sequence of R. palustris, which consists of a 5,459,213-base-pair (bp) circular chromosome with 4,836 predicted genes and a plasmid of 8,427 bp. The sequence reveals genes that confer a remarkably large number of options within a given type of metabolism, including three nitrogenases, five benzene ring cleavage pathways and four light harvesting 2 systems. R. palustris encodes 63 signal transduction histidine kinases and 79 response regulator receiver domains. Almost 15% of the genome is devoted to transport. This genome sequence is a starting point to use R. palustris as a model to explore how organisms integrate metabolic modules in response to environmental perturbations.
                Bookmark

                Author and book information

                Book Chapter
                2009
                : 31-55
                10.1007/978-1-4020-8815-5_3
                40e6350d-246a-4f62-b1d0-b70cf64d348a
                History

                Comments

                Comment on this book