10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Continuity and Discontinuity in the Peopling of Europe 

      Endostructural Characterisation of the Regourdou 1 Neanderthal Proximal Arm: Bilateral Asymmetry and Handedness

      other

      Read this book at

      Publisher
      Buy book
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Postcranial robusticity in Homo. I: Temporal trends and mechanical interpretation.

          Temporal trends in postcranial robusticity within the genus Homo are explored by comparing cross-sectional diaphyseal and articular properties of the femur, and to a more limited extent, the humerus, in samples of Recent and earlier Homo. Using both theoretical mechanical models and empirical observations within Recent humans, scaling relationships between structural properties and bone length are developed. The influence of body shape on these relationships is considered. These scaling factors are then used to standardize structural properties for comparisons with pre-Recent Homo (Homo sp. and H. erectus, archaic H. sapiens, and early modern H. sapiens). Results of the comparisons lead to the following conclusions: 1) There has been a consistent, exponentially increasing decline in diaphyseal robusticity within Homo that has continued from the early Pleistocene through living humans. Early modern H. sapiens are closer in shaft robusticity to archaic H. sapiens than they are to Recent humans. The increase in diaphyseal robusticity in earlier Homo is a result of both medullary contraction and periosteal expansion relative to Recent humans. 2) There has been no similar temporal decline in articular robusticity within Homo--relative femoral head size is similar in all groups and time periods. Thus, articular to shaft proportions are different in pre-Recent and Recent Homo. 3) These findings are most consistent with a mechanical explanation (declining mechanical loading of the postcranium), that acted primarily through developmental rather than genetic means. The environmental (behavioral) factors that brought about the decline in postcranial robusticity in Homo are ultimately linked to increases in brain size and cultural-technological advances, although changes in robusticity lag behind changes in cognitive capabilities.
            • Record: found
            • Abstract: found
            • Article: not found

            Postcranial robusticity in Homo. II: Humeral bilateral asymmetry and bone plasticity.

            The analysis of humeral asymmetry in Recent human skeletal samples and an extant tennis-player sample documents minimal asymmetry in bone length, little asymmetry in distal humeral articular breadth, but pronounced and variable asymmetry in mid- and distal diaphyseal cross-sectional geometric parameters. More specifically, skeletal samples of normal modern Euroamericans, prehistoric and early historic Amerindians, and prehistoric Japanese show moderate (ca. 5-14%) median asymmetry in diaphyseal cross-sectional areas and polar second moments of area, whereas the tennis-player sample, with pronounced unilateral physical activity, exhibits median asymmetries of 28-57% in the same parameters. A sample of Neandertals with nonpathological upper limbs exhibits similarly low articular asymmetry but pronounced diaphyseal asymmetries, averaging 24-57%. In addition, three Neandertals with actual or possible post-traumatic upper limb alterations have the same low articular asymmetry but extremely high diaphyseal asymmetries, averaging 112-215%. These data support those from experimental work on animals, exercise programs of humans, and human clinical contexts in establishing the high degree of diaphyseal plasticity possible for humans, past and present, under changing biomechanical loading conditions. This lends support to activity-related functional interpretations of changing human diaphyseal morphology and robusticity during the Pleistocene.
              • Record: found
              • Abstract: found
              • Article: not found

              Postcranial robusticity in Homo. III: Ontogeny.

              The influence of developmental factors on long-bone cross-sectional geometry and articular size in modern humans is investigated using two approaches: (1) an analysis of the effects of increased mechanical loading on long-bone structure when applied during different developmental periods, using data collected for a study of upper limb bone bilateral asymmetry in professional tennis players; and (2) an analysis of the relative timing of age changes in femoral dimensions among juveniles from the Pecos Pueblo Amerindian archaeological sample. Results of these analyses are used to interpret the femoral morphology of three pre-Recent Homo juveniles--the H. erectus KNM-WT 15000 and the archaic H. sapiens La Ferrassie 6 and Teshik-Tash 1--as well as observed differences in postcranial morphology between adult Recent and earlier Homo (Ruff et al., 1993). Our findings indicate the following: (1) There are age-related changes in long-bone diaphyseal envelope sensitivity to increased mechanical loading, with the periosteal envelope more responsive prior to mid-adolescence, and the endosteal envelope more responsive thereafter. The periosteal expansion and endosteal contraction of the diaphysis documented earlier for adult pre-Recent Homo relative to Recent humans (Ruff et al., 1993) is thus consistent with a developmental response to increased mechanical loading applied throughout life. The relatively large medullary cavity in the 11-12-year-old KNM-WT 15000 femur is also consistent with this model. However, the two archaic H. sapiens juveniles show relatively small medullary cavities, possibly indicating a modified developmental pattern in this group. (2) Articulations follow a growth pattern similar to that of long-bone length (and stature), while cross-sectional diaphyseal dimensions (cortical area, second moments of area) show a contrasting growth pattern, with slower initial growth from childhood through mid-adolescence, followed by a "catch-up" period that continues through early adulthood. This latter pattern is more similar to the growth curve for body weight, and may in fact partially reflect adaptation of the diaphysis to increased weight bearing. Because of these different growth patterns, articulations appear relatively large, and diaphyseal breadths relatively small during late childhood to mid-adolescence (i.e., about 9-13 years), when compared to adults from the same population. KNM-WT 15000 shows this same proportional difference from adult early Homo specimens, which is therefore interpreted as simply a developmental consequence of his age at death.(ABSTRACT TRUNCATED AT 400 WORDS)

                Author and book information

                Book Chapter
                2011
                February 26 2011
                : 175-178
                10.1007/978-94-007-0492-3_15
                4464e3e1-321d-45dd-8f41-cb6caeade3a5
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,338