26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Physiology of the Gastrointestinal Tract 

      Brainstem Control of the Gastric Function

      edited_book
      ,
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references341

          • Record: found
          • Abstract: found
          • Article: not found

          Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha.

          The proinflammatory cytokine tumor necrosis factor-alpha (TNFalpha) causes a rapid exocytosis of AMPA receptors in hippocampal pyramidal cells and is constitutively required for the maintenance of normal surface expression of AMPA receptors. Here we demonstrate that TNFalpha acts on neuronal TNFR1 receptors to preferentially exocytose glutamate receptor 2-lacking AMPA receptors through a phosphatidylinositol 3 kinase-dependent process. This increases excitatory synaptic strength while changing the molecular stoichiometry of synaptic AMPA receptors. Conversely, TNFalpha causes an endocytosis of GABA(A) receptors, resulting in fewer surface GABA(A) receptors and a decrease in inhibitory synaptic strength. These results suggest that TNFalpha can regulate neuronal circuit homeostasis in a manner that may exacerbate excitotoxic damage resulting from neuronal insults.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional and chemical anatomy of the afferent vagal system.

            The results of neural tracing studies suggest that vagal afferent fibers in cervical and thoracic branches innervate the esophagus, lower airways, heart, aorta, and possibly the thymus, and via abdominal branches the entire gastrointestinal tract, liver, portal vein, billiary system, pancreas, but not the spleen. In addition, vagal afferents innervate numerous thoracic and abdominal paraganglia associated with the vagus nerves. Specific terminal structures such as flower basket terminals, intraganglionic laminar endings and intramuscular arrays have been identified in the various organs and organ compartments, suggesting functional specializations. Electrophysiological recording studies have identified mechano- and chemo-receptors, as well as temperature- and osmo-sensors. In the rat and several other species, mostly polymodal units, while in the cat more specialized units have been reported. Few details of the peripheral transduction cascades and the transmitters for signal propagation in the CNS are known. Glutamate and its various receptors are likely to play an important role at the level of primary afferent signaling to the solitary nucleus. The vagal afferent system is thus in an excellent position to detect immune-related events in the periphery and generate appropriate autonomic, endocrine, and behavioral responses via central reflex pathways. There is also good evidence for a role of vagal afferents in nociception, as manifested by affective-emotional responses such as increased blood pressure and tachycardia, typically associated with the perception of pain, and mediated via central reflex pathways involving the amygdala and other parts of the limbic system. The massive central projections are likely to be responsible for the antiepileptic properties of afferent vagal stimulation in humans. Furthermore, these functions are in line with a general defensive character ascribed to the vagal afferent, paraventricular system in lower vertebrates.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The pathophysiology of tumor necrosis factors.

              P Vassalli (1992)
                Bookmark

                Author and book information

                Book Chapter
                2012
                : 861-891
                10.1016/B978-0-12-382026-6.00031-2
                5d5fbd35-d280-4adc-a762-f5e30918d8d8
                History

                Comments

                Comment on this book

                Book chapters

                Similar content4,797

                Cited by6