0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Ticks of Europe and North Africa 

      Ixodes acuminatus Neumann, 1901 (Figs. 60–62)

      , ,

      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 13

          • Record: found
          • Abstract: found
          • Article: not found

          Ticks and the city: ectoparasites of the Northern white-breasted hedgehog (Erinaceus roumanicus) in an urban park.

          The European hedgehog (Erinaceus europaeus) is known to host several ectoparasites and also tick-borne pathogens, but there is scant information on its eastern relative, the Northern white-breasted hedgehog (Erinaceus roumanicus). We have studied an urban population of E. roumanicus in a city park of central Budapest, Hungary, for 2 years to investigate their tick and flea species. A total of 5063 ticks and 818 fleas were collected from 247 hedgehogs (including 46 recaptures). Ectoparasite prevalence and intensity differed significantly (p<0.001) between the 2 study years attributable to the enhanced tick removal rate due to anaesthesia used in the second year. The most common tick species was Ixodes ricinus (93.7%) followed by unidentified Ixodes larvae (5%). Only 57 hedgehog ticks (I. hexagonus) were removed from 22 hedgehogs. One I. acuminatus and one Hyalomma marginatum nymph were also collected. Mean intensity of tick infestation was 26.5 (range: 0-155 ticks/host) and mean intensity of flea infestation was 6.6 (range: 0-78 fleas/host). Most fleas (99.4%) collected were hedgehog fleas (Archaeopsylla erinacei), dog fleas (Ctenocephalides canis) were found on 2 hedgehogs. Hyalomma marginatum has previously not been found in Hungary, and I. acuminatus was only reported sporadically before. The large number of ectoparasites and the 2 imported tick species may thus survive in close proximity to humans if hedgehogs are present. This calls attention to the risk of possible tick-borne human infections that urban hedgehogs can pose. Copyright © 2011 Elsevier GmbH. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Spatial disaggregation of tick occurrence and ecology at a local scale as a preliminary step for spatial surveillance of tick-borne diseases: general framework and health implications in Belgium

            Background The incidence of tick-borne diseases is increasing in Europe. Sub national information on tick distribution, ecology and vector status is often lacking. However, precise location of infection risk can lead to better targeted prevention measures, surveillance and control. Methods In this context, the current paper compiled geolocated tick occurrences in Belgium, a country where tick-borne disease has received little attention, in order to highlight the potential value of spatial approaches and draw some recommendations for future research priorities. Results Mapping of 89,289 ticks over 654 sites revealed that ticks such as Ixodes ricinus and Ixodes hexagonus are largely present while Dermacentor reticulatus has a patchy distribution. Suspected hot spots of tick diversity might favor pathogen exchanges and suspected hot spots of I. ricinus abundance might increase human-vector contact locally. This underlines the necessity to map pathogens and ticks in detail. While I. ricinus is the main vector, I. hexagonus is a vector and reservoir of Borrelia burgdorferi s.l., which is active the whole year and is also found in urban settings. This and other nidiculous species bite humans less frequently, but seem to harbour pathogens. Their role in maintaining a pathogenic cycle within the wildlife merits investigation as they might facilitate transmission to humans if co-occurring with I. ricinus. Many micro-organisms are found abroad in tick species present in Belgium. Most have not been recorded locally but have not been searched for. Some are transmitted directly at the time of the bite, suggesting promotion of tick avoidance additionally to tick removal. Conclusion This countrywide approach to tick-borne diseases has helped delineate recommendations for future research priorities necessary to design public health policies aimed at spatially integrating the major components of the ecological cycle of tick-borne diseases. A systematic survey of tick species and associated pathogens is called for in Europe, as well as better characterisation of species interaction in the ecology of tick-borne diseases, those being all tick species, pathogens, hosts and other species which might play a role in tick-borne diseases complex ecosystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The relationships between Ixodes ricinus and small mammal species at the woodland-pasture interface.

              Ixodes ricinus, as vector, and small mammals, as reservoirs, are implicated in pathogen transmission between wild fauna, domestic animals and humans at the woodland-pasture interface. The ecological relationship between ticks and small mammals was monitored in 2005 on four bocage (enclosed pastureland) sites in central France, where questing ticks were collected by dragging and small mammals were trapped. Questing I. ricinus tick and small mammal locations in the environment were assessed through correspondence analysis. I. ricinus larval burden on small mammals was modeled using a negative binomial law. The correspondence analyses underlined three landscape features: grassland, hedgerow, and woodland. Seven small mammal species were trapped, while questing ticks were all I. ricinus, with the highest abundance in woodland and the lowest in pasture. The small mammals were overall more abundant in hedgerow, less present in woodland and sparse in grassland. They carried mainly I. ricinus, and secondarily I. acuminatus and I. trianguliceps. The most likely profile for a tick-infested small mammal corresponded to a male wood mouse (Apodemus sylvaticus) in woodland or hedgerow during a dry day. A. sylvaticus, which was the only species captured in grassland, but was also present in hedgerow and woodland, may be a primary means of transfer of I. ricinus larvae from woodland to pasture.
                Bookmark

                Author and book information

                Book
                978-3-319-63759-4
                978-3-319-63760-0
                2017
                10.1007/978-3-319-63760-0
                Book Chapter
                2017
                March 16 2018
                : 173-177
                10.1007/978-3-319-63760-0_35

                Comments

                Comment on this book

                Book chapters

                Similar content 469