6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Breeding Insect Resistant Crops for Sustainable Agriculture 

      Insect-Plant Interrelationships

      other
      ,
      Springer Singapore

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references162

          • Record: found
          • Abstract: not found
          • Article: not found

          BUTTERFLIES AND PLANTS: A STUDY IN COEVOLUTION

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant defense against herbivores: chemical aspects.

            Plants have evolved a plethora of different chemical defenses covering nearly all classes of (secondary) metabolites that represent a major barrier to herbivory: Some are constitutive; others are induced after attack. Many compounds act directly on the herbivore, whereas others act indirectly via the attraction of organisms from other trophic levels that, in turn, protect the plant. An enormous diversity of plant (bio)chemicals are toxic, repellent, or antinutritive for herbivores of all types. Examples include cyanogenic glycosides, glucosinolates, alkaloids, and terpenoids; others are macromolecules and comprise latex or proteinase inhibitors. Their modes of action include membrane disruption, inhibition of nutrient and ion transport, inhibition of signal transduction processes, inhibition of metabolism, or disruption of the hormonal control of physiological processes. Recognizing the herbivore challenge and precise timing of plant activities as well as the adaptive modulation of the plants' metabolism is important so that metabolites and energy may be efficiently allocated to defensive activities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol.

              We identify a cytochrome P450 gene (CYP6AE14) from cotton bollworm (Helicoverpa armigera), which permits this herbivore to tolerate otherwise inhibitory concentrations of the cotton metabolite, gossypol. CYP6AE14 is highly expressed in the midgut and its expression correlates with larval growth when gossypol is included in the diet. When larvae are fed plant material expressing double-stranded RNA (dsRNA) specific to CYP6AE14, levels of this transcript in the midgut decrease and larval growth is retarded. Both effects are more dramatic in the presence of gossypol. As a glutathione-S-transferase gene (GST1) is silenced in GST1 dsRNA-expressing plants, feeding insects plant material expressing dsRNA may be a general strategy to trigger RNA interference and could find applications in entomological research and field control of insect pests.
                Bookmark

                Author and book information

                Book Chapter
                2017
                October 17 2017
                : 1-44
                10.1007/978-981-10-6056-4_1
                74d1e381-1888-480d-b212-3d1edc5829cd
                History

                Comments

                Comment on this book