0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Polyglutamine Disorders 

      Clinical Features of Machado-Joseph Disease

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing.

          Patients with cerebellar damage often present with the cerebellar motor syndrome of dysmetria, dysarthria and ataxia, yet cerebellar lesions can also result in the cerebellar cognitive affective syndrome (CCAS), including executive, visual spatial, and linguistic impairments, and affective dysregulation. We have hypothesized that there is topographic organization in the human cerebellum such that the anterior lobe and lobule VIII contain the representation of the sensorimotor cerebellum; lobules VI and VII of the posterior lobe comprise the cognitive cerebellum; and the posterior vermis is the anatomical substrate of the limbic cerebellum. Here we analyze anatomical, functional neuroimaging, and clinical data to test this hypothesis. We find converging lines of evidence supporting regional organization of motor, cognitive, and limbic behaviors in the cerebellum. The cerebellar motor syndrome results when lesions involve the anterior lobe and parts of lobule VI, interrupting cerebellar communication with cerebral and spinal motor systems. Cognitive impairments occur when posterior lobe lesions affect lobules VI and VII (including Crus I, Crus II, and lobule VIIB), disrupting cerebellar modulation of cognitive loops with cerebral association cortices. Neuropsychiatric disorders manifest when vermis lesions deprive cerebro-cerebellar-limbic loops of cerebellar input. We consider this functional topography to be a consequence of the differential arrangement of connections of the cerebellum with the spinal cord, brainstem, and cerebral hemispheres, reflecting cerebellar incorporation into the distributed neural circuits subserving movement, cognition, and emotion. These observations provide testable hypotheses for future investigations. Copyright (c) 2009 Elsevier Srl. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis.

            Autosomal dominant cerebellar ataxias are hereditary neurodegenerative disorders that are known as spinocerebellar ataxias (SCA) in genetic nomenclature. In the pregenomic era, ataxias were some of the most poorly understood neurological disorders; the unravelling of their molecular basis enabled precise diagnosis in vivo and explained many clinical phenomena such as anticipation and variable phenotypes even within one family. However, the discovery of many ataxia genes and loci in the past decade threatens to cause more confusion than optimism among clinicians. Therefore, the provision of guidance for genetic testing according to clinical findings and frequencies of SCA subtypes in different ethnic groups is a major challenge. The identification of ataxia genes raises hope that essential pathogenetic mechanisms causing SCA will become more and more apparent. Elucidation of the pathogenesis of SCA hopefully will enable the development of rational therapies for this group of disorders, which currently can only be treated symptomatically.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6.

              Spinocerebellar ataxias are dominantly inherited disorders that are associated with progressive brain degeneration, mainly affecting the cerebellum and brainstem. As part of the multicentre European integrated project on spinocerebellar ataxias study, 37 patients with spinocerebellar ataxia-1, 19 with spinocerebellar ataxia-3 and seven with spinocerebellar ataxia-6 were clinically examined and underwent magnetic resonance imaging at baseline and after a 2-year follow-up. All patients were compared with age-matched and gender-matched healthy control subjects. Magnetic resonance imaging analysis included three-dimensional volumetry and observer-independent longitudinal voxel-based morphometry. Volumetry revealed loss of brainstem, cerebellar and basal ganglia volume in all genotypes. Most sensitive to change was the pontine volume in spinocerebellar ataxia-1, striatal volume in spinocerebellar ataxia-3 and caudate volume in spinocerebellar ataxia-6. Sensitivity to change, as measured by standard response mean, of the respective MRI measures was greater than that of the most sensitive clinical measure, the Scale for the Assessment and Rating of Ataxia. Longitudinal voxel-based morphometry revealed greatest grey matter loss in the cerebellum and brainstem in spinocerebellar ataxia-1, in the putamen and pallidum in spinocerebellar ataxia-3 and in the cerebellum, thalamus, putamen and pallidum in spinocerebellar ataxia-6. There was a mild correlation between CAG repeat length and volume loss of the bilateral cerebellum and the pons in spinocerebellar ataxia-1. Quantitative volumetry and voxel-based morphometry imaging demonstrated genotype-specific patterns of atrophy progression in spinocerebellar ataxias-1, 3 and 6, and they showed a high sensitivity to detect change that was superior to clinical scales. These structural magnetic resonance imaging findings have the potential to serve as surrogate markers, which might help to delineate quantifiable endpoints and non-invasive methods for rapid and reliable data acquisition, encouraging their use in clinical trials.
                Bookmark

                Author and book information

                Book Chapter
                2018
                February 10 2018
                : 255-273
                10.1007/978-3-319-71779-1_13
                29427108
                7ac5bd23-3bc8-4ffa-9f44-e7c05b6f84df
                History

                Comments

                Comment on this book

                Book chapters

                Similar content3,984

                Cited by6