1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Ultra-Wide Bandgap Semiconductor Materials 

      Nanostructures based on UWBG materials

      edited_book
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Electric Field Effect in Atomically Thin Carbon Films

          We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Control of graphene's properties by reversible hydrogenation: evidence for graphane.

            Although graphite is known as one of the most chemically inert materials, we have found that graphene, a single atomic plane of graphite, can react with atomic hydrogen, which transforms this highly conductive zero-overlap semimetal into an insulator. Transmission electron microscopy reveals that the obtained graphene derivative (graphane) is crystalline and retains the hexagonal lattice, but its period becomes markedly shorter than that of graphene. The reaction with hydrogen is reversible, so that the original metallic state, the lattice spacing, and even the quantum Hall effect can be restored by annealing. Our work illustrates the concept of graphene as a robust atomic-scale scaffold on the basis of which new two-dimensional crystals with designed electronic and other properties can be created by attaching other atoms and molecules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanostructured Materials for Room-Temperature Gas Sensors.

              Sensor technology has an important effect on many aspects in our society, and has gained much progress, propelled by the development of nanoscience and nanotechnology. Current research efforts are directed toward developing high-performance gas sensors with low operating temperature at low fabrication costs. A gas sensor working at room temperature is very appealing as it provides very low power consumption and does not require a heater for high-temperature operation, and hence simplifies the fabrication of sensor devices and reduces the operating cost. Nanostructured materials are at the core of the development of any room-temperature sensing platform. The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here. Particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations. Finally, some future research perspectives and new challenges that the field of room-temperature sensors will have to address are also discussed.
                Bookmark

                Author and book information

                Book Chapter
                2019
                : 421-478
                10.1016/B978-0-12-815468-7.00005-6
                7fdc1d25-be5c-4e92-a11b-3c4738d2cf39
                History

                Comments

                Comment on this book