10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found

      Carbon and Nitrogen Metabolism of Sponge Microbiome

      other
      ,
      Springer Netherlands

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: not found
          • Article: not found

          An Earth-system perspective of the global nitrogen cycle.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Surviving in a marine desert: the sponge loop retains resources within coral reefs.

            Ever since Darwin's early descriptions of coral reefs, scientists have debated how one of the world's most productive and diverse ecosystems can thrive in the marine equivalent of a desert. It is an enigma how the flux of dissolved organic matter (DOM), the largest resource produced on reefs, is transferred to higher trophic levels. Here we show that sponges make DOM available to fauna by rapidly expelling filter cells as detritus that is subsequently consumed by reef fauna. This "sponge loop" was confirmed in aquarium and in situ food web experiments, using (13)C- and (15)N-enriched DOM. The DOM-sponge-fauna pathway explains why biological hot spots such as coral reefs persist in oligotrophic seas--the reef's paradox--and has implications for reef ecosystem functioning and conservation strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea.

              Ammonia-oxidizing archaea are ubiquitous in marine and terrestrial environments and now thought to be significant contributors to carbon and nitrogen cycling. The isolation of Candidatus "Nitrosopumilus maritimus" strain SCM1 provided the opportunity for linking its chemolithotrophic physiology with a genomic inventory of the globally distributed archaea. Here we report the 1,645,259-bp closed genome of strain SCM1, revealing highly copper-dependent systems for ammonia oxidation and electron transport that are distinctly different from known ammonia-oxidizing bacteria. Consistent with in situ isotopic studies of marine archaea, the genome sequence indicates N. maritimus grows autotrophically using a variant of the 3-hydroxypropionate/4-hydroxybutryrate pathway for carbon assimilation, while maintaining limited capacity for assimilation of organic carbon. This unique instance of archaeal biosynthesis of the osmoprotectant ectoine and an unprecedented enrichment of multicopper oxidases, thioredoxin-like proteins, and transcriptional regulators points to an organism responsive to environmental cues and adapted to handling reactive copper and nitrogen species that likely derive from its distinctive biochemistry. The conservation of N. maritimus gene content and organization within marine metagenomes indicates that the unique physiology of these specialized oligophiles may play a significant role in the biogeochemical cycles of carbon and nitrogen.
                Bookmark

                Author and book information

                Book Chapter
                2019
                June 08 2019
                : 145-169
                10.1007/978-94-024-1612-1_9
                9f3836e7-9e59-4b04-bcb8-805bea2454b0
                History

                Comments

                Comment on this book

                Book chapters

                Similar content3,023

                Cited by4