10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Evo-Devo: Non-model Species in Cell and Developmental Biology 

      Oikopleura dioica: An Emergent Chordate Model to Study the Impact of Gene Loss on the Evolution of the Mechanisms of Development

      other

      Read this book at

      Publisher
      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: not found

          Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators.

          Members of the SOX family of transcription factors are found throughout the animal kingdom, are characterized by the presence of a DNA-binding HMG domain, and are involved in a diverse range of developmental processes. Previous attempts to group SOX genes and deduce their structural, functional, and evolutionary relationships have relied largely on complete or partial HMG box sequence of a limited number of genes. In this study, we have used complete HMG domain sequence, full-length protein structure, and gene organization data to study the pattern of evolution within the family. For the first time, a substantial number of invertebrate SOX sequences have been included in the analysis. We find support for subdivision of the family into groups A-H, as has been suggested in some previous studies, and for the assignment of two new groups, I and J. For vertebrate genes, it appears that relatedness as suggested by HMG domain sequence is congruent with relatedness as indicated by overall structure of the full-length protein and intron-exon structure of the genes. Most of the SOX groups identified in vertebrates were represented by a single SOX sequence in each invertebrate species studied. We have named anonymous sequences and, where appropriate, have suggested systematic names for some previously identified sequences. In addition, we identify an HMG domain signature motif which may be considered representative of the SOX family. Based on our data, we propose a robust phylogeny of SOX genes that reflects their evolutionary history in metazoans. Copyright 2000 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The rise and fall of Hox gene clusters.

            Although all bilaterian animals have a related set of Hox genes, the genomic organization of this gene complement comes in different flavors. In some unrelated species, Hox genes are clustered; in others, they are not. This indicates that the bilaterian ancestor had a clustered Hox gene family and that, subsequently, this genomic organization was either maintained or lost. Remarkably, the tightest organization is found in vertebrates, raising the embarrassingly finalistic possibility that vertebrates have maintained best this ancestral configuration. Alternatively, could they have co-evolved with an increased ;organization' of the Hox clusters, possibly linked to their genomic amplification, which would be at odds with our current perception of evolutionary mechanisms? When discussing the why's and how's of Hox gene clustering, we need to account for three points: the mechanisms of cluster evolution; the underlying biological constraints; and the developmental modes of the animals under consideration. By integrating these parameters, general conclusions emerge that can help solve the aforementioned dilemma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage.

              DNA double-strand breaks (DSBs) are common lesions that continually threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including cell death. Misrepair is also fraught with danger, especially inappropriate end-joining events, which commonly underlie oncogenic transformation and can scramble the genome. Canonically, cells employ two basic mechanisms to repair DSBs: homologous recombination (HR) and the classical nonhomologous end-joining pathway (cNHEJ). More recent experiments identified a highly error-prone NHEJ pathway, termed alternative NHEJ (aNHEJ), which operates in both cNHEJ-proficient and cNHEJ-deficient cells. aNHEJ is now recognized to catalyze many genome rearrangements, some leading to oncogenic transformation. Here, we review the mechanisms of cNHEJ and aNHEJ, their interconnections with the DNA damage response (DDR), and the mechanisms used to determine which of the three DSB repair pathways is used to heal a particular DSB. We briefly review recent clinical applications involving NHEJ and NHEJ inhibitors.
                Bookmark

                Author and book information

                Book Chapter
                2019
                October 10 2019
                : 63-105
                10.1007/978-3-030-23459-1_4
                a44e6df4-33b9-4997-b9dd-42ea040dd23e
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,354

                Cited by2