2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Foodborne Pathogens and Antibiotic Resistance 

      Food Spoilage byPseudomonasspp.-An Overview

      edited_book

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 169

          • Record: found
          • Abstract: found
          • Article: not found

          Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet.

          Standardized rapid pulsed-field gel electrophoresis (PFGE) protocols for the subtyping of Escherichia coli O157:H7, Salmonella serotypes, and Shigella species are described. These protocols are used by laboratories in PulseNet, a network of state and local health departments, and other public health laboratories that perform real-time PFGE subtyping of these bacterial foodborne pathogens for surveillance and outbreak investigations. Development and standardization of these protocols consisted of a thorough optimization of reagents and reaction conditions to ensure that the protocols yielded consistent results and high-quality PFGE pattern data in all the PulseNet participating laboratories. These rapid PFGE protocols are based on the original 3-4-day standardized procedure developed at Centers for Disease Control and Prevention that was validated in 1996 and 1997 by eight independent laboratories. By using these rapid standardized PFGE protocols, PulseNet laboratories are able to subtype foodborne pathogens in approximately 24 h, allowing for the early detection of foodborne disease case clusters and often aiding in the identification of the source responsible for the infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pseudomonas aeruginosa: all roads lead to resistance.

            Pseudomonas aeruginosa is often resistant to multiple antibiotics and consequently has joined the ranks of 'superbugs' due to its enormous capacity to engender resistance. It demonstrates decreased susceptibility to most antibiotics due to low outer membrane permeability coupled to adaptive mechanisms and can readily achieve clinical resistance. Newer research, using mutant library screens, microarray technologies and mutation frequency analysis, has identified very large collections of genes (the resistome) that when mutated lead to resistance as well as new forms of adaptive resistance that can be triggered by antibiotics themselves, in in vivo growth conditions or complex adaptations such as biofilm growth or swarming motility. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pseudomonas genomes: diverse and adaptable.

              Members of the genus Pseudomonas inhabit a wide variety of environments, which is reflected in their versatile metabolic capacity and broad potential for adaptation to fluctuating environmental conditions. Here, we examine and compare the genomes of a range of Pseudomonas spp. encompassing plant, insect and human pathogens, and environmental saprophytes. In addition to a large number of allelic differences of common genes that confer regulatory and metabolic flexibility, genome analysis suggests that many other factors contribute to the diversity and adaptability of Pseudomonas spp. Horizontal gene transfer has impacted the capability of pathogenic Pseudomonas spp. in terms of disease severity (Pseudomonas aeruginosa) and specificity (Pseudomonas syringae). Genome rearrangements likely contribute to adaptation, and a considerable complement of unique genes undoubtedly contributes to strain- and species-specific activities by as yet unknown mechanisms. Because of the lack of conserved phenotypic differences, the classification of the genus has long been contentious. DNA hybridization and genome-based analyses show close relationships among members of P. aeruginosa, but that isolates within the Pseudomonas fluorescens and P. syringae species are less closely related and may constitute different species. Collectively, genome sequences of Pseudomonas spp. have provided insights into pathogenesis and the genetic basis for diversity and adaptation. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
                Bookmark

                Author and book information

                Book
                9781119139188
                9781119139157
                December 13 2016
                10.1002/9781119139188
                Product
                Book Chapter
                February 22 2017
                : 41-71
                10.1002/9781119139188.ch3

                Comments

                Comment on this book

                Book chapters

                Similar content 2,932

                Cited by 1