2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Cytochrome P450 

      Hormonal Regulation of Liver Cytochrome P450 Enzymes

      ,

      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 237

          • Record: found
          • Abstract: found
          • Article: not found

          Sex differences in pharmacokinetics and pharmacodynamics.

          Significant differences that exist between the sexes affect the prevalence, incidence and severity of a broad range of diseases and conditions. Men and women also differ in their response to drug treatment. It is therefore essential to understand these reactions in order to appropriately conduct risk assessment and to design safe and effective treatments. Even from that modest perspective, how and when we use drugs can result in unwanted and unexpected outcomes. This review summarizes the sex-based differences that impact on pharmacokinetics, and includes a general comparison of clinical pharmacology as it applies to men, women and pregnant women. Sex-related or pregnancy-induced changes in drug absorption, distribution, metabolism and elimination, when significant, may guide changes in dosage regimen or therapeutic monitoring to increase its effectiveness or reduce potential toxicity. Given those parameters, and our knowledge of sex differences, we can derive essentially all factors necessary for therapeutic optimization. Since this is a rapidly evolving area, it is essential for the practitioner to review drug prescribing information and recent literature in order to fully understand the impact of these differences on clinical therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions.

            The cytochrome P-450 monooxygenase 3A4 (CYP3A4) is responsible for the oxidative metabolism of a wide variety of xenobiotics including an estimated 60% of all clinically used drugs. Although expression of the CYP3A4 gene is known to be induced in response to a variety of compounds, the mechanism underlying this induction, which represents a basis for drug interactions in patients, has remained unclear. We report the identification of a human (h) orphan nuclear receptor, termed the pregnane X receptor (PXR), that binds to a response element in the CYP3A4 promoter and is activated by a range of drugs known to induce CYP3A4 expression. Comparison of hPXR with the recently cloned mouse PXR reveals marked differences in their activation by certain drugs, which may account in part for the species-specific effects of compounds on CYP3A gene expression. These findings provide a molecular explanation for the ability of disparate chemicals to induce CYP3A4 levels and, furthermore, provide a basis for developing in vitro assays to aid in predicting whether drugs will interact in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SXR, a novel steroid and xenobiotic-sensing nuclear receptor.

              An important requirement for physiologic homeostasis is the detoxification and removal of endogenous hormones and xenobiotic compounds with biological activity. Much of the detoxification is performed by cytochrome P-450 enzymes, many of which have broad substrate specificity and are inducible by hundreds of different compounds, including steroids. The ingestion of dietary steroids and lipids induces the same enzymes; therefore, they would appear to be integrated into a coordinated metabolic pathway. Instead of possessing hundreds of receptors, one for each inducing compound, we propose the existence of a few broad specificity, low-affinity sensing receptors that would monitor aggregate levels of inducers to trigger production of metabolizing enzymes. In support of this model, we have isolated a novel nuclear receptor, termed the steroid and xenobiotic receptor (SXR), which activates transcription in response to a diversity of natural and synthetic compounds. SXR forms a heterodimer with RXR that can bind to and induce transcription from response elements present in steroid-inducible cytochrome P-450 genes and is expressed in tissues in which these catabolic enzymes are expressed. These results strongly support the steroid sensor hypothesis and suggest that broad specificity sensing receptors may represent a novel branch of the nuclear receptor superfamily.
                Bookmark

                Author and book information

                Book
                978-3-319-12107-9
                978-3-319-12108-6
                2015
                10.1007/978-3-319-12108-6
                Book Chapter
                2015
                March 14 2015
                : 813-850
                10.1007/978-3-319-12108-6_11

                Comments

                Comment on this book

                Book chapters

                Similar content 1,877

                Cited by 1