10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found

      Strategies to Probe Mechanoreception: From Mechanical to Optogenetic Approaches

      other
      , ,
      Springer Japan

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Millisecond-timescale, genetically targeted optical control of neural activity.

          Temporally precise, noninvasive control of activity in well-defined neuronal populations is a long-sought goal of systems neuroscience. We adapted for this purpose the naturally occurring algal protein Channelrhodopsin-2, a rapidly gated light-sensitive cation channel, by using lentiviral gene delivery in combination with high-speed optical switching to photostimulate mammalian neurons. We demonstrate reliable, millisecond-timescale control of neuronal spiking, as well as control of excitatory and inhibitory synaptic transmission. This technology allows the use of light to alter neural processing at the level of single spikes and synaptic events, yielding a widely applicable tool for neuroscientists and biomedical engineers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.

            Microbial-type rhodopsins are found in archaea, prokaryotes, and eukaryotes. Some of them represent membrane ion transport proteins such as bacteriorhodopsin, a light-driven proton pump, or channelrhodopsin-1 (ChR1), a recently identified light-gated proton channel from the green alga Chlamydomonas reinhardtii. ChR1 and ChR2, a related microbial-type rhodopsin from C. reinhardtii, were shown to be involved in generation of photocurrents of this green alga. We demonstrate by functional expression, both in oocytes of Xenopus laevis and mammalian cells, that ChR2 is a directly light-switched cation-selective ion channel. This channel opens rapidly after absorption of a photon to generate a large permeability for monovalent and divalent cations. ChR2 desensitizes in continuous light to a smaller steady-state conductance. Recovery from desensitization is accelerated by extracellular H+ and negative membrane potential, whereas closing of the ChR2 ion channel is decelerated by intracellular H+. ChR2 is expressed mainly in C. reinhardtii under low-light conditions, suggesting involvement in photoreception in dark-adapted cells. The predicted seven-transmembrane alpha helices of ChR2 are characteristic for G protein-coupled receptors but reflect a different motif for a cation-selective ion channel. Finally, we demonstrate that ChR2 may be used to depolarize small or large cells, simply by illumination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The functional organization of the barrel cortex.

              The tactile somatosensory pathway from whisker to cortex in rodents provides a well-defined system for exploring the link between molecular mechanisms, synaptic circuits, and behavior. The primary somatosensory cortex has an exquisite somatotopic map where each individual whisker is represented in a discrete anatomical unit, the "barrel," allowing precise delineation of functional organization, development, and plasticity. Sensory information is actively acquired in awake behaving rodents and processed differently within the barrel map depending upon whisker-related behavior. The prominence of state-dependent cortical sensory processing is likely to be crucial in our understanding of active sensory perception, experience-dependent plasticity and learning.
                Bookmark

                Author and book information

                Book Chapter
                2015
                : 305-314
                10.1007/978-4-431-55516-2_21
                d1f6587f-4289-4335-a518-2636816f3789
                History

                Comments

                Comment on this book

                Book chapters

                Similar content4,097