7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Periparturient Diseases of Dairy Cows 

      The Omics Side of Fatty Liver: A Holistic Approach for a Commonly Occurring Peripartal Disease

      other
      , ,
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: not found
          • Article: not found

          Biology of Dairy Cows During the Transition Period: the Final Frontier?

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression.

            The expression of microRNA in nonalcoholic steatohepatitis (NASH) and their role in the genesis of NASH are not known. The aims of this study were to: (1) identify differentially expressed microRNAs in human NASH, (2) tabulate their potential targets, and (3) define the effect of a specific differentially expressed microRNA, miR-122, on its targets and compare these effects with the pattern of expression of these targets in human NASH. The expression of 474 human microRNAs was compared in subjects with the metabolic syndrome and NASH versus controls with normal liver histology. Differentially expressed microRNAs were identified by the muParaflo microRNA microarray assay and validated using quantitative real-time polymerase chain reaction (PCR). The effects of a specific differentially expressed miRNA (miR-122) on its predicted targets were assessed by silencing and overexpressing miR-122 in vitro. A total of 23 microRNAs were underexpressed or overexpressed. The predicted targets of these microRNAs are known to affect cell proliferation, protein translation, apoptosis, inflammation, oxidative stress, and metabolism. The miR-122 level was significantly decreased in subjects with NASH (63% by real-time PCR, P < 0.00001). Silencing miR-122 led to an initial increase in mRNA levels of these targets (P < 0.05 for all) followed by a decrease by 48 hours. This was accompanied by an increase in protein levels of these targets (P < 0.05 for all). Overexpression of miR-122 led to a significant decrease in protein levels of these targets. NASH is associated with altered hepatic microRNA expression. Underexpression of miR-122 potentially contributes to altered lipid metabolism implicated in the pathogenesis of NASH.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease.

              Cirrhosis and liver cancer are potential outcomes of advanced nonalcoholic fatty liver disease (NAFLD). It is not clear what factors determine whether patients will develop advanced or mild NAFLD, limiting noninvasive diagnosis and treatment before clinical sequelae emerge. We investigated whether DNA methylation profiles can distinguish patients with mild disease from those with advanced NAFLD, and how these patterns are functionally related to hepatic gene expression. We collected frozen liver biopsies and clinical data from patients with biopsy-proven NAFLD (56 in the discovery cohort and 34 in the replication cohort). Samples were divided into groups based on histologic severity of fibrosis: F0-1 (mild) and F3-4 (advanced). DNA methylation profiles were determined and coupled with gene expression data from the same biopsies; differential methylation was validated in subsets of the discovery and replication cohorts. We then analyzed interactions between the methylome and transcriptome. Clinical features did not differ between patients known to have mild or advanced fibrosis based on biopsy analysis. There were 69,247 differentially methylated CpG sites (76% hypomethylated, 24% hypermethylated) in patients with advanced vs mild NAFLD (P < .05). Methylation at fibroblast growth factor receptor 2, methionine adenosyl methyltransferase 1A, and caspase 1 was validated by bisulfite pyrosequencing and the findings were reproduced in the replication cohort. Methylation correlated with gene transcript levels for 7% of differentially methylated CpG sites, indicating that differential methylation contributes to differences in expression. In samples with advanced NAFLD, many tissue repair genes were hypomethylated and overexpressed, and genes in certain metabolic pathways, including 1-carbon metabolism, were hypermethylated and underexpressed. Functionally relevant differences in methylation can distinguish patients with advanced vs mild NAFLD. Altered methylation of genes that regulate processes such as steatohepatitis, fibrosis, and carcinogenesis indicate the role of DNA methylation in progression of NAFLD. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and book information

                Book Chapter
                2017
                December 23 2017
                : 223-246
                10.1007/978-3-319-43033-1_11
                fe7165ed-e0e8-4b1e-be07-bd64e3c742ee
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,453