Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
333
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Specific Impact of Tobamovirus Infection on the Arabidopsis Small RNA Profile

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tobamoviruses encode a silencing suppressor that binds small RNA (sRNA) duplexes in vitro and supposedly in vivo to counteract antiviral silencing. Here, we used sRNA deep-sequencing combined with transcriptome profiling to determine the global impact of tobamovirus infection on Arabidopsis sRNAs and their mRNA targets. We found that infection of Arabidopsis plants with Oilseed rape mosaic tobamovirus causes a global size-specific enrichment of miRNAs, ta-siRNAs, and other phased siRNAs. The observed patterns of sRNA enrichment suggest that in addition to a role of the viral silencing suppressor, the stabilization of sRNAs might also occur through association with unknown host effector complexes induced upon infection. Indeed, sRNA enrichment concerns primarily 21-nucleotide RNAs with a 5′-terminal guanine. Interestingly, ORMV infection also leads to accumulation of novel miRNA-like sRNAs from miRNA precursors. Thus, in addition to canonical miRNAs and miRNA*s, miRNA precursors can encode additional sRNAs that may be functional under specific conditions like pathogen infection. Virus-induced sRNA enrichment does not correlate with defects in miRNA-dependent ta-siRNA biogenesis nor with global changes in the levels of mRNA and ta-siRNA targets suggesting that the enriched sRNAs may not be able to significantly contribute to the normal activity of pre-loaded RISC complexes. We conclude that tobamovirus infection induces the stabilization of a specific sRNA pool by yet unknown effector complexes. These complexes may sequester viral and host sRNAs to engage them in yet unknown mechanisms involved in plant:virus interactions.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Small silencing RNAs: an expanding universe.

          Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNA classes have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, their modes of target regulation and in the biological pathways they regulate. There is a growing realization that, despite their differences, these distinct small RNA pathways are interconnected, and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana.

            To better understand the diversity of small silencing RNAs expressed in plants, we employed high-throughput pyrosequencing to obtain 887,000 reads corresponding to Arabidopsis thaliana small RNAs. They represented 340,000 unique sequences, a substantially greater diversity than previously obtained in any species. Most of the small RNAs had the properties of heterochromatic small interfering RNAs (siRNAs) associated with DNA silencing in that they were preferentially 24 nucleotides long and mapped to intergenic regions. Their density was greatest in the proximal and distal pericentromeric regions, with only a slightly preferential propensity to match repetitive elements. Also present were 38 newly identified microRNAs (miRNAs) and dozens of other plausible candidates. One miRNA mapped within an intron of DICER-LIKE 1 (DCL1), suggesting a second homeostatic autoregulatory mechanism for DCL1 expression; another defined the phase for siRNAs deriving from a newly identified trans-acting siRNA gene (TAS4); and two depended on DCL4 rather than DCL1 for their accumulation, indicating a second pathway for miRNA biogenesis in plants. More generally, our results revealed the existence of a layer of miRNA-based control beyond that found previously that is evolutionarily much more fluid, employing many newly emergent and diverse miRNAs, each expressed in specialized tissues or at low levels under standard growth conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes

              In plants, microRNAs (miRNAs) comprise one of two classes of small RNAs that function primarily as negative regulators at the posttranscriptional level. Several MIRNA genes in the plant kingdom are ancient, with conservation extending between angiosperms and the mosses, whereas many others are more recently evolved. Here, we use deep sequencing and computational methods to identify, profile and analyze non-conserved MIRNA genes in Arabidopsis thaliana. 48 non-conserved MIRNA families, nearly all of which were represented by single genes, were identified. Sequence similarity analyses of miRNA precursor foldback arms revealed evidence for recent evolutionary origin of 16 MIRNA loci through inverted duplication events from protein-coding gene sequences. Interestingly, these recently evolved MIRNA genes have taken distinct paths. Whereas some non-conserved miRNAs interact with and regulate target transcripts from gene families that donated parental sequences, others have drifted to the point of non-interaction with parental gene family transcripts. Some young MIRNA loci clearly originated from one gene family but form miRNAs that target transcripts in another family. We suggest that MIRNA genes are undergoing relatively frequent birth and death, with only a subset being stabilized by integration into regulatory networks.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                10 May 2011
                : 6
                : 5
                : e19549
                Affiliations
                [1 ]Botanical Institute, Department of Plant Physiology, Zürich-Basel Plant Science Center, University of Basel, Basel, Switzerland
                [2 ]Department of Plant Systems Biology, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB) - Ghent University, Ghent, Belgium
                [3 ]Department of Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
                [4 ]Institut de Biologie Moléculaire des Plantes du CNRS (UPR 2357), Université de Strasbourg, Strasbourg, France
                [5 ]Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
                Instituto Nacional de Câncer, Brazil
                Author notes

                Conceived and designed the experiments: MH MP. Performed the experiments: QH CK AA AN DG DW FV. Analyzed the data: QH MK AN JH MP MH. Contributed reagents/materials/analysis tools: MK JH MP MH. Wrote the paper: QH AN MP MH FV. Provided funding through governmental grants and co-ordinated the whole activity: MH.

                [¤]

                Current address: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland

                Article
                PONE-D-11-04591
                10.1371/journal.pone.0019549
                3091872
                21572953
                8bde7cb6-9800-492d-a087-0b6c98c36345
                Hu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 March 2011
                : 1 April 2011
                Page count
                Pages: 15
                Categories
                Research Article
                Biology
                Genomics
                Genome Analysis Tools
                Transcriptomes
                Genome Expression Analysis
                Model Organisms
                Plant and Algal Models
                Arabidopsis Thaliana
                Molecular Cell Biology
                Gene Expression
                RNA interference
                RNA stability
                Plant Science
                Plant Pathology
                Plant Pathogens
                Plant Genomics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article