130
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurotoxicants Are in the Air: Convergence of Human, Animal, and In Vitro Studies on the Effects of Air Pollution on the Brain

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In addition to increased morbidity and mortality caused by respiratory and cardiovascular diseases, air pollution may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is a mixture comprised of several components, of which ultrafine particulate matter (UFPM; <100 nm) is of much concern, as these particles can enter the circulation and distribute to most organs, including the brain. A major constituent of ambient UFPM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution may lead to neurotoxicity. In addition to a variety of behavioral abnormalities, two prominent effects caused by air pollution are oxidative stress and neuroinflammation, which are seen in both humans and animals and are confirmed by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered the most relevant. Human and animal studies suggest that air pollution (and DE) may cause developmental neurotoxicity and may contribute to the etiology of neurodevelopmental disorders, including autistic spectrum disorders. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Stages in the development of Parkinson's disease-related pathology.

          The synucleinopathy, idiopathic Parkinson's disease, is a multisystem disorder that involves only a few predisposed nerve cell types in specific regions of the human nervous system. The intracerebral formation of abnormal proteinaceous Lewy bodies and Lewy neurites begins at defined induction sites and advances in a topographically predictable sequence. As the disease progresses, components of the autonomic, limbic, and somatomotor systems become particularly badly damaged. During presymptomatic stages 1-2, inclusion body pathology is confined to the medulla oblongata/pontine tegmentum and olfactory bulb/anterior olfactory nucleus. In stages 3-4, the substantia nigra and other nuclear grays of the midbrain and forebrain become the focus of initially slight and, then, severe pathological changes. At this point, most individuals probably cross the threshold to the symptomatic phase of the illness. In the end-stages 5-6, the process enters the mature neocortex, and the disease manifests itself in all of its clinical dimensions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clearing the air: a review of the effects of particulate matter air pollution on human health.

            The World Health Organization estimates that particulate matter (PM) air pollution contributes to approximately 800,000 premature deaths each year, ranking it the 13th leading cause of mortality worldwide. However, many studies show that the relationship is deeper and far more complicated than originally thought. PM is a portion of air pollution that is made up of extremely small particles and liquid droplets containing acids, organic chemicals, metals, and soil or dust particles. PM is categorized by size and continues to be the fraction of air pollution that is most reliably associated with human disease. PM is thought to contribute to cardiovascular and cerebrovascular disease by the mechanisms of systemic inflammation, direct and indirect coagulation activation, and direct translocation into systemic circulation. The data demonstrating PM's effect on the cardiovascular system are strong. Populations subjected to long-term exposure to PM have a significantly higher cardiovascular incident and mortality rate. Short-term acute exposures subtly increase the rate of cardiovascular events within days of a pollution spike. The data are not as strong for PM's effects on cerebrovascular disease, though some data and similar mechanisms suggest a lesser result with smaller amplitude. Respiratory diseases are also exacerbated by exposure to PM. PM causes respiratory morbidity and mortality by creating oxidative stress and inflammation that leads to pulmonary anatomic and physiologic remodeling. The literature shows PM causes worsening respiratory symptoms, more frequent medication use, decreased lung function, recurrent health care utilization, and increased mortality. PM exposure has been shown to have a small but significant adverse effect on cardiovascular, respiratory, and to a lesser extent, cerebrovascular disease. These consistent results are shown by multiple studies with varying populations, protocols, and regions. The data demonstrate a dose-dependent relationship between PM and human disease, and that removal from a PM-rich environment decreases the prevalence of these diseases. While further study is needed to elucidate the effects of composition, chemistry, and the PM effect on susceptible populations, the preponderance of data shows that PM exposure causes a small but significant increase in human morbidity and mortality. Most sources agree on certain "common sense" recommendations, although there are lonely limited data to support them. Indoor PM exposure can be reduced by the usage of air conditioning and particulate filters, decreasing indoor combustion for heating and cooking, and smoking cessation. Susceptible populations, such as the elderly or asthmatics, may benefit from limiting their outdoor activity during peak traffic periods or poor air quality days. These simple changes may benefit individual patients in both short-term symptomatic control and long-term cardiovascular and respiratory complications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Olfactory dysfunction in Parkinson disease.

              Olfactory dysfunction is among the earliest nonmotor features of Parkinson disease (PD). Such dysfunction is present in approximately 90% of early-stage PD cases and can precede the onset of motor symptoms by years. The mechanisms responsible for olfactory dysfunction are currently unknown. As equivalent deficits are observed in Alzheimer disease, Down syndrome, and the Parkinson-dementia complex of Guam, a common pathological substrate may be involved. Given that olfactory loss occurs to a lesser extent or is absent in disorders such as multiple system atrophy, corticobasal degeneration, and progressive supranuclear palsy, olfactory testing can be useful in differential diagnosis. The olfactory dysfunction in PD and a number of related diseases with smell loss correlates with decreased numbers of neurons in structures such as the locus coeruleus, the raphe nuclei, and the nucleus basalis of Meynart. These neuroanatomical findings, together with evidence for involvement of the autonomic nervous system in numerous PD-related symptoms, suggest that deficits in cholinergic, noradrenergic and serotonergic function may contribute to the olfactory loss. This Review discusses the current understanding of olfactory dysfunction in PD, including factors that may be related to its cause.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2014
                12 January 2014
                : 2014
                : 736385
                Affiliations
                1Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt, Suite No. 100, Seattle, WA 98105, USA
                2Department of Neuroscience, University of Parma, Via Volturno 39, 43100 Parma, Italy
                3Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
                Author notes

                Academic Editor: Ambuja Bale

                Article
                10.1155/2014/736385
                3912642
                63fae559-025e-4087-926e-a065863dbfc3
                Copyright © 2014 Lucio G. Costa et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 November 2013
                : 23 December 2013
                : 24 December 2013
                Funding
                Funded by: http://dx.doi.org/10.13039/100000066 National Institute of Environmental Health Sciences
                Award ID: R01ES022949
                Funded by: http://dx.doi.org/10.13039/100000066 National Institute of Environmental Health Sciences
                Award ID: P30ES07033
                Categories
                Review Article

                Comments

                Comment on this article