273
views
0
recommends
+1 Recommend
0 collections
    28
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      CTCF-Mediated Functional Chromatin Interactome in Pluripotent Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mammalian genomes are viewed as functional organizations that orchestrate spatial and temporal gene regulation. CTCF, the most characterized insulator-binding protein, has been implicated as a key genome organizer. Yet, little is known about CTCF-associated higher order chromatin structures at a global scale. Here, we applied Chromatin Interaction Analysis by Paired-End-Tag sequencing to elucidate the CTCF-chromatin interactome in pluripotent cells. From this analysis, 1,480 cis and 336 trans interacting loci were identified with high reproducibility and precision. Associating these chromatin interaction loci with their underlying epigenetic states, promoter activities, enhancer binding and nuclear lamina occupancy, we uncovered five distinct chromatin domains that suggest potential new models of CTCF function in chromatin organization and transcriptional control. Specifically, CTCF interactions demarcate chromatin-nuclear membrane attachments and influence proper gene expression through extensive crosstalk between promoters and regulatory elements. This highly complex nuclear organization offers insights towards the unifying principles governing genome plasticity and function.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          ChIP-seq accurately predicts tissue-specific activity of enhancers.

          A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover because they are scattered among the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here we present the results of chromatin immunoprecipitation with the enhancer-associated protein p300 followed by massively parallel sequencing, and map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases demonstrated reproducible enhancer activity in the tissues that were predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities, and suggest that such data sets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stability and flexibility of epigenetic gene regulation in mammalian development.

            Wolf Reik (2007)
            During development, cells start in a pluripotent state, from which they can differentiate into many cell types, and progressively develop a narrower potential. Their gene-expression programmes become more defined, restricted and, potentially, 'locked in'. Pluripotent stem cells express genes that encode a set of core transcription factors, while genes that are required later in development are repressed by histone marks, which confer short-term, and therefore flexible, epigenetic silencing. By contrast, the methylation of DNA confers long-term epigenetic silencing of particular sequences--transposons, imprinted genes and pluripotency-associated genes--in somatic cells. Long-term silencing can be reprogrammed by demethylation of DNA, and this process might involve DNA repair. It is not known whether any of the epigenetic marks has a primary role in determining cell and lineage commitment during development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cohesin mediates transcriptional insulation by CCCTC-binding factor.

              Cohesin complexes mediate sister-chromatid cohesion in dividing cells but may also contribute to gene regulation in postmitotic cells. How cohesin regulates gene expression is not known. Here we describe cohesin-binding sites in the human genome and show that most of these are associated with the CCCTC-binding factor (CTCF), a zinc-finger protein required for transcriptional insulation. CTCF is dispensable for cohesin loading onto DNA, but is needed to enrich cohesin at specific binding sites. Cohesin enables CTCF to insulate promoters from distant enhancers and controls transcription at the H19/IGF2 (insulin-like growth factor 2) locus. This role of cohesin seems to be independent of its role in cohesion. We propose that cohesin functions as a transcriptional insulator, and speculate that subtle deficiencies in this function contribute to 'cohesinopathies' such as Cornelia de Lange syndrome.
                Bookmark

                Author and article information

                Journal
                9216904
                2419
                Nat Genet
                Nat. Genet.
                Nature genetics
                1061-4036
                1546-1718
                10 June 2011
                19 June 2011
                08 September 2012
                : 43
                : 7
                : 630-638
                Affiliations
                [1 ] Genome Institute of Singapore, Singapore 138672
                [2 ] National University of Singapore, Singapore 117543
                [3 ] Nanyang Technological University, Singapore 637551
                [4 ] Duke-NUS Graduate Medical School Singapore, Singapore 169857
                Author notes
                [# ] Corresponding authors: Chia-Lin Wei, Tel: 1-(925) 927-2593, cwei@ 123456lbl.gov ; Yijun Ruan, (65) 6808-8073, ruanyj@ 123456gis.a-star.edu.sg
                [*]

                These authors contributed equally

                [¥]

                Current address: Joint Genome Institute, Walnut Creek, California, U.S.A.

                Article
                nihpa297076
                10.1038/ng.857
                3436933
                21685913
                b77979a3-f347-4568-b200-7b5e9ccad1c3

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Human Genome Research Institute : NHGRI
                Award ID: R01 HG004456-03S1 || HG
                Funded by: National Human Genome Research Institute : NHGRI
                Award ID: R01 HG004456-03 || HG
                Funded by: National Human Genome Research Institute : NHGRI
                Award ID: R01 HG004456-02 || HG
                Funded by: National Human Genome Research Institute : NHGRI
                Award ID: R01 HG004456-01 || HG
                Categories
                Article

                Genetics
                enhancer,chromatin organization,insulator,nuclear lamina,epigenetic regulation
                Genetics
                enhancer, chromatin organization, insulator, nuclear lamina, epigenetic regulation

                Comments

                Comment on this article