179
views
0
recommends
+1 Recommend
0
shares
    • Review: found
    Is Open Access

    Review of 'A machine learning forecasting model for COVID-19 pandemic in India'

    Bookmark
    5
    A machine learning forecasting model for COVID-19 pandemic in IndiaCrossref
    Average rating:
        Rated 5 of 5.
    Level of importance:
        Rated 5 of 5.
    Level of validity:
        Rated 5 of 5.
    Level of completeness:
        Rated 4 of 5.
    Level of comprehensibility:
        Rated 5 of 5.
    Competing interests:
    None

    Reviewed article

    • Record: found
    • Abstract: found
    • Article: not found

    A machine learning forecasting model for COVID-19 pandemic in India

    Coronavirus disease (COVID-19) is an inflammation disease from a new virus. The disease causes respiratory ailment (like influenza) with manifestations, for example, cold, cough and fever, and in progressively serious cases, the problem in breathing. COVID-2019 has been perceived as a worldwide pandemic and a few examinations are being led utilizing different numerical models to anticipate the likely advancement of this pestilence. These numerical models dependent on different factors and investigations are dependent upon potential inclination. Here, we presented a model that could be useful to predict the spread of COVID-2019. We have performed linear regression, Multilayer perceptron and Vector autoregression method for desire on the COVID-19 Kaggle data to anticipate the epidemiological example of the ailment and pace of COVID-2019 cases in India. Anticipated the potential patterns of COVID-19 effects in India dependent on data gathered from Kaggle. With the common data about confirmed, death and recovered cases across India for over the time length helps in anticipating and estimating the not so distant future. For extra assessment or future perspective, case definition and data combination must be kept up persistently.
      Bookmark

      Review information


      Genetics

      Review text

      The paper is well-written and detailed 

      Comments

      Comment on this review

      Version and Review History