11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evaluation of the immunogenicity and vaccine potential of recombinant Plasmodium falciparum merozoite surface protein 8.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The C-terminal 19-kDa domain of merozoite surface protein 1 (MSP1₁₉) is the target of protective antibodies but alone is poorly immunogenic. Previously, using the Plasmodium yoelii murine model, we fused P. yoelii MSP1₁₉ (PyMSP1₁₉) with full-length P. yoelii merozoite surface protein 8 (MSP8). Upon immunization, the MSP8-restricted T cell response provided help for the production of high and sustained levels of protective PyMSP1₁₉- and PyMSP8-specific antibodies. Here, we assessed the vaccine potential of MSP8 of the human malaria parasite, Plasmodium falciparum. Distinct from PyMSP8, P. falciparum MSP8 (PfMSP8) contains an N-terminal asparagine and aspartic acid (Asn/Asp)-rich domain whose function is unknown. Comparative analysis of recombinant full-length PfMSP8 and a truncated version devoid of the Asn/Asp-rich domain, PfMSP8(ΔAsn/Asp), showed that both proteins were immunogenic for T cells and B cells. All T cell epitopes utilized mapped within rPfMSP8(ΔAsn/Asp). The dominant B cell epitopes were conformational and common to both rPfMSP8 and rPfMSP8(ΔAsn/Asp). Analysis of native PfMSP8 expression revealed that PfMSP8 is present intracellularly in late schizonts and merozoites. Following invasion, PfMSP8 is found distributed on the surface of ring- and trophozoite-stage parasites. Consistent with a low and/or transient expression of PfMSP8 on the surface of merozoites, PfMSP8-specific rabbit IgG did not inhibit the in vitro growth of P. falciparum blood-stage parasites. These studies suggest that the further development of PfMSP8 as a malaria vaccine component should focus on the use of PfMSP8(ΔAsn/Asp) and its conserved, immunogenic T cell epitopes as a fusion partner for protective domains of poor immunogens, including PfMSP1₁₉.

          Related collections

          Author and article information

          Journal
          Infect Immun
          Infection and immunity
          American Society for Microbiology
          1098-5522
          0019-9567
          Jul 2012
          : 80
          : 7
          Affiliations
          [1 ] Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
          Article
          IAI.00211-12
          10.1128/IAI.00211-12
          3416454
          22585960
          0214200b-95d0-49ba-b364-5dbf070d18aa
          History

          Comments

          Comment on this article