3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metagenomic analyses reveal microbial communities and functional differences between Daqu from seven provinces

      , , , , ,
      Food Research International
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Formation of flavour compounds in the Maillard reaction.

          This paper discusses the importance of the Maillard reaction for food quality and focuses on flavour compound formation. The most important classes of Maillard flavour compounds are indicated and it is shown where they are formed in the Maillard reaction. Some emphasis is given on the kinetics of formation of flavour compounds. It is concluded that the essential elements for predicting the formation of flavour compounds in the Maillard reaction are now established but much more work needs to be done on specific effects such as the amino acid type, the pH, water content and interactions in the food matrix. It is also concluded that most work is done on free amino acids but hardly anything on peptides and proteins, which could generate peptide- or protein-specific flavour compounds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Terpenes and isoprenoids: a wealth of compounds for global use

            Role of terpenes and isoprenoids has been pivotal in the survival and evolution of higher plants in various ecoregions. These products find application in the pharmaceutical, flavor fragrance, and biofuel industries. Fitness of plants in a wide range of environmental conditions entailed (i) evolution of secondary metabolic pathways enabling utilization of photosynthate for the synthesis of a variety of biomolecules, thereby facilitating diverse eco-interactive functions, and (ii) evolution of structural features for the sequestration of such compounds away from the mainstream primary metabolism to prevent autotoxicity. This review summarizes features and applications of terpene and isoprenoid compounds, comprising the largest class of secondary metabolites. Many of these terpene and isoprenoid biomolecules happen to be high-value bioproducts. They are essential components of all living organisms that are chemically highly variant. They are constituents of primary (quinones, chlorophylls, carotenoids, steroids) as well as secondary metabolism compounds with roles in signal transduction, reproduction, communication, climatic acclimation, defense mechanisms and more. They comprise single to several hundreds of repetitive five-carbon units of isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In plants, there are two pathways that lead to the synthesis of terpene and isoprenoid precursors, the cytosolic mevalonic acid (MVA) pathway and the plastidic methylerythritol phosphate (MEP) pathway. The diversity of terpenoids can be attributed to differential enzyme and substrate specificities and to secondary modifications acquired by terpene synthases. The biological role of secondary metabolites has been recognized as pivotal in the survival and evolution of higher plants. Terpenes and isoprenoids find application in pharmaceutical, nutraceutical, synthetic chemistry, flavor fragrance, and possibly biofuel industries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flavour formation by amino acid catabolism.

              Ylva Ardö (2006)
              Microbial catabolism of amino acids produces flavour compounds of importance for foods such as cheese, wine and fermented sausages. Lactic acid bacteria are equipped with enzyme systems for using the amino acids in their metabolism and are useful for flavour formation of foods. Branched-chain amino acids (Leu, Ile, Val) are converted into compounds contributing to malty, fruity and sweaty flavours; catabolism of aromatic amino acids (Phe, Tyr, Trp) produce floral, chemical and faecal flavours; aspartic acid (Asp) is catabolised into buttery flavours and sulphuric amino acids (Met, Cys) are transferred into compounds contributing to boiled cabbage, meaty and garlic flavours.
                Bookmark

                Author and article information

                Journal
                Food Research International
                Food Research International
                Elsevier BV
                09639969
                October 2023
                October 2023
                : 172
                : 113076
                Article
                10.1016/j.foodres.2023.113076
                37689857
                036b7fc7-5b79-4c61-a6b3-62c3f56ba931
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article