8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Photovoltaic properties of three new cyanine dyes for dye-sensitized solar cells.

      Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Three carboxylated cyanine dyes, 2-[(1-butyl-3,3-dimethyl-5-carboxylindoline-2-ylidene)propenyl]-[1-butyl-3,3-dimethyl-7-(1-ethyl-1H-1,2,3-triazole-4-yl]-1H-benz[e]indolium iodide (), 2-[(1-butyl-3,3-dimethyl-5-carboxyl-indoline-2-ylidene)propenyl]-{1-butyl-3,3-dimethyl-7-[(4-piperidine-N-ethyl-1,8-naphthalimide)-1H-1,2,3-triazole-4-yl]}-1H-benz[e]indolium iodide (Cy2) and 2-[(1-butyl-3,3-dimethyl-5-carboxyl-indoline-2-ylidene)propenyl)-[1-butyl-3,3-dimethyl-7-{(4-piperidine-N-butyl-1,8-naphthalimide)-1H-1,2,3-triazole-4-yl}]-1H-benz[e]indolium iodide (Cy3), have been synthesized and characterized with regard to their structures and electrochemical properties. Upon adsorption onto a TiO(2) electrode, the absorption spectra of the three cyanine dyes are all broadened to both red and blue sides compared with their respective spectra in an acetonitrile and ethanol mixture. Cy2 and Cy3, containing a naphthalimide group, have stronger absorption intensities and broader absorption spectra than , which consequently leads to better light-to-electricity conversion properties. Among the three cyanine dyes, generated the highest photoelectric conversion yield of 4.80% (J(sc) = 14.5 mA cm(-2), V(oc) = 500 mV, FF = 0.49) under illumination with 75 mW cm(-2) white light from a Xe lamp.

          Related collections

          Author and article information

          Journal
          18167598
          10.1039/b712439b

          Comments

          Comment on this article