12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of peripheral blood-derived mesenchymal stem cells on macrophage polarization and Th17/Treg balance in vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Mesenchymal stem cells (MSCs) have always been the center of the experimental exploration of regenerative therapy together with other stem cells. Among with, peripheral blood-derived mesenchymal stem cells (PBMSCs) have been regarded as promising in clinical applications for its convenience of acquisition from peripheral blood. However, few reported experiments so far to elucidate the exact mechanisms of how PBMSC influence regeneration. As the ability of immunomodulatory is one of the crucial features that influence MSC to reconstruct impaired tissue, we decided to focus on the immunomodulatory abilities of PBMSCs and conducted experiments associated with macrophages and T lymphocytes, which are two main cell types that dominate the innate and acquired immunity. Therefore, a basis can be made from these experiments for applications of PBMSCs in regenerative therapy in the future.

          Methods

          A Transwell system was used for the coculturing of PBMSCs with macrophages. T lymphocytes were cultured directly with PBMSCs. Flow cytometry and immunochemistry were conducted for identifying the phenotypes. Immunomagnetic microspheres, ELISA and RT-qPCR were used to detect the expressions of relevant molecules or mRNAs.

          Results

          After coculturing PBMSCs with M0, the anti-inflammatory IL-10 was increased whereas the proinflammatory TNF-α decreased; the expression of CD11b, CD68, CD206, Arg-1, IL-10 and CCL-22 was up-regulated whereas IL-1β down-regulated. The expression of TGF-β, RORγt, Foxp3 and IL-10 was increased in the cocultured lymphocytes whereas IL-17 and IL-6 decreased; the ratio of CD4 +IL-17 + Th17/CD25 +Foxp3 + Treg was reduced.

          Conclusion

          The findings demonstrated that PBMSCs promoted the anti-inflammatory features of macrophages and the Th17/Treg system. PBMSCs are able to inhibit inflammation associated with these two immune cell systems, and thus provide insight into how PBMSCs achieve their immunomodulatory ability.

          Highlights

          • Anti-inflammatory effect of peripheral blood-derived mesenchymal stem cells.

          • Co-culture promotes the polarization of M2 macrophages.

          • Co-culture alters the balance of Th17/Tregs.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.

          We describe de novo generation of IL-17-producing T cells from naive CD4 T cells, induced in cocultures of naive CD4 T cells and naturally occurring CD4+ CD25+ T cells (Treg) in the presence of TLR3, TLR4, or TLR9 stimuli. Treg can be substituted by TGFbeta1, which, together with the proinflammatory cytokine IL-6, supports the differentiation of IL-17-producing T cells, a process that is amplified by IL-1beta and TNFalpha. We could not detect a role for IL-23 in the differentiation of IL-17-producing T cells but confirmed its importance for their survival and expansion. Transcription factors GATA-3 and T-bet, as well as its target Hlx, are absent in IL-17-producing T cells, and they do not express the negative regulator for TGFbeta signaling, Smad7. Our data indicate that, in the presence of IL-6, TGFbeta1 subverts Th1 and Th2 differentiation for the generation of IL-17-producing T cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophage polarization in pathology.

            Macrophages are cells of the innate immunity constituting the mononuclear phagocyte system and endowed with remarkable different roles essential for defense mechanisms, development of tissues, and homeostasis. They derive from hematopoietic precursors and since the early steps of fetal life populate peripheral tissues, a process continuing throughout adult life. Although present essentially in every organ/tissue, macrophages are more abundant in the gastro-intestinal tract, liver, spleen, upper airways, and brain. They have phagocytic and bactericidal activity and produce inflammatory cytokines that are important to drive adaptive immune responses. Macrophage functions are settled in response to microenvironmental signals, which drive the acquisition of polarized programs, whose extremes are simplified in the M1 and M2 dichotomy. Functional skewing of monocyte/macrophage polarization occurs in physiological conditions (e.g., ontogenesis and pregnancy), as well as in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer) and is now considered a key determinant of disease development and/or regression. Here, we will review evidence supporting a dynamic skewing of macrophage functions in disease, which may provide a basis for macrophage-centered therapeutic strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunopathology of inflammatory bowel disease.

              Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. The host microbiome, as well as viruses and fungi, play important roles in the development of IBD either by causing inflammation directly or indirectly through an altered immune system. New technologies have allowed researchers to be able to quantify the various components of the microbiome, which will allow for future developments in the etiology of IBD. Various components of the mucosal immune system are implicated in the pathogenesis of IBD and include intestinal epithelial cells, innate lymphoid cells, cells of the innate (macrophages/monocytes, neutrophils, and dendritic cells) and adaptive (T-cells and B-cells) immune system, and their secreted mediators (cytokines and chemokines). Either a mucosal susceptibility or defect in sampling of gut luminal antigen, possibly through the process of autophagy, leads to activation of innate immune response that may be mediated by enhanced toll-like receptor activity. The antigen presenting cells then mediate the differentiation of naïve T-cells into effector T helper (Th) cells, including Th1, Th2, and Th17, which alter gut homeostasis and lead to IBD. In this review, the effects of these components in the immunopathogenesis of IBD will be discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Regen Ther
                Regen Ther
                Regenerative Therapy
                Japanese Society for Regenerative Medicine
                2352-3204
                16 May 2020
                June 2020
                16 May 2020
                : 14
                : 275-283
                Affiliations
                [a ]Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
                [b ]Experimental Medical Centre, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, China
                [c ]Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, China
                Author notes
                []Corresponding author. Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, 149 Dalian Rd., Zunyi 563000, Guizhou, China. oceanzt@ 123456163.com
                [∗∗ ]Corresponding author. Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, China. zmczq@ 123456163.com
                Article
                S2352-3204(20)30031-6
                10.1016/j.reth.2020.03.008
                7232039
                32455158
                0df9c646-a2ee-4451-82e2-1d6d597bb47f
                © 2020 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 20 October 2019
                : 29 February 2020
                : 11 March 2020
                Categories
                Original Article

                stem cells,mesenchymal stem cells,inflammation,macrophages,t lymphocytes

                Comments

                Comment on this article