7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      The Neurotrophins NT3 and BDNF Induce Selective Specification of Neuropeptide Coexpression and Neuronal Connectivity in Arcuate and Periventricular Hypothalamic Neurons in vitro

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Little is known on the influence of epigenetic factors in the developing hypothalamus, a region particularly involved in neuroendocrine regulation and rich in neuropeptides. The present study evaluated the effects of neurotrophins and neuronal activity on neuronal differentiation in hypothalamic cultures sampled from either arcuate or anterior periventricular regions of 17-day-old Sprague-Dawley fetuses. Expression of neuropeptides, tyrosine hydroxylase, neurotrophins and neurotrophin receptors was tested on young (6 days in vitro, DIV) and more mature (14 DIV) cultured neurons by multiple reverse transcription polymerase chain reaction on single cells. In parallel, spontaneous postsynaptic currents were recorded as an index of neuronal connectivity. Neurotrophin-3 (NT3) was expressed in a much larger population of neurons than brain-derived neurotrophic factor (BDNF) at both culture times. At 6 DIV, synaptic currents were scarce and expression of the neurotrophin receptors trkB and trkC was found in a small proportion of neurons only. These parameters increased markedly between 6 and 14 DIV, and also upon addition of neurotrophins. The most striking consequence of arcuate neuron maturation in vitro between 6 and 14 DIV was a marked phenotypic specification affecting somatostatin, neuropeptide Y and pro-opiomelanocortin, the three major neuropeptides expressed in the cultures. NT3, but not BDNF, was able to reproduce maturation-related phenotypic specification in 6 DIV arcuate cultures. Maturation-dependent phenotypic specification was less marked in periventricular cultures; in that case BDNF, not NT3 had a slight effect on phenotype specification. It is concluded that NT3 plays a selective role in phenotypic specification of neuropeptides in the arcuate region, whereas other maturation parameters (neurotrophin receptor expression and/or synaptogenesis) can be potentiated by either neurotrophin in both structures.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth.

          Neurotrophin regulation of neuronal morphology is complex and may involve differential action of alternative Trk receptor isoforms. We transfected ferret visual cortical slices with full-length and truncated TrkB receptors to examine their roles in regulating cortical dendrite development. These TrkB isoforms had differential effects on dendritic arborization: whereas full-length TrkB increased proximal dendritic branching, truncated TrkB promoted net elongation of distal dendrites. The morphological effects of each receptor isoform were distinct, yet their actions inhibited one another. Actions of the truncated TrkB receptor did not involve unmasking of endogenous TrkC signaling. These results suggest that TrkB receptors do not regulate dendritic growth per se but, rather, the mode of such growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nervous system.

            Tyrosine protein kinases trk, trkB and trkC are signal-transducing receptors for the neurotrophins nerve growth factor, brain-derived nerve growth factor, neurotrophin-3 and neurotrophin-4. Here we report on the isolation of cDNA fragments encoding a part of rat trk and trkB proteins, respectively, and characterization of a full-length cDNA clone encoding rat trkC. Cells expressing mRNAs for the different members of the trk family were identified in the rat central nervous system by in situ hybridization using oligonucleotide probes designed from the isolated cDNA sequences and complementary to mRNA sequences coding for the extracellular region of the receptors. The expression of trk mRNA was found to be restricted to neurons of the basal forebrain, caudate-putamen with features of cholinergic cells and to magnocellular neurons of several brainstem nuclei. In contrast, cells expressing trkB and trkC mRNAs were widely distributed in the brain. Areas expressing high levels of trkB or trkC mRNAs included olfactory formations, neocortex, hippocampus, thalamic and hypothalamic nuclei, brainstem nuclei, cerebellum and spinal cord motoneurons. A similar distribution for trkB and trkC mRNAs was shown in most areas but each probe specific for these mRNAs also provided distinct labeling patterns in different subregions, layers and cells. Comparison between our data and previous analyses of cells expressing mRNAs for neurotrophins and the low-affinity nerve growth factor receptor suggests that different modes of action and different combinations of receptors mediate biological responses to neurotrophins in the adult rat brain.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The organization of tubero-hypophyseal and reticulo-infundibular catecholamine neuron systems in the rat brain.

                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2002
                January 2002
                24 January 2002
                : 75
                : 1
                : 55-69
                Affiliations
                INSERM U159, Paris, France
                Article
                48221 Neuroendocrinology 2002;75:55–69
                10.1159/000048221
                11810035
                0f6f309b-95b4-4a15-9f82-e6e587e12619
                © 2002 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 6, Tables: 2, References: 52, Pages: 15
                Categories
                Neuronal Differentiation

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Molecular neuroendocrinology,Periventricular hypothalamus,Arcuate nucleus,Electrophysiology,Neuropeptide Y,Galanin,Neurotrophin receptors,Tyrosin hydroxylase,Growth hormone releasing hormone,Pro-opiomelanocortin,Neurotrophins,Somatostatin

                Comments

                Comment on this article