635
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Resuscitation and auto resuscitation by airway reflexes in animals

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Various diseases often result in decompensation requiring resuscitation. In infants moderate hypoxia evokes a compensatory augmented breath – sigh and more severe hypoxia results in a solitary gasp. Progressive asphyxia provokes gasping respiration saving the healthy infant – autoresuscitation by gasping. A neonate with sudden infant death syndrome, however, usually will not survive. Our systematic research in animals indicated that airway reflexes have similar resuscitation potential as gasping respiration. Nasopharyngeal stimulation in cats and most mammals evokes the aspiration reflex, characterized by spasmodic inspiration followed by passive expiration. On the contrary, expiration reflex from the larynx, or cough reflex from the pharynx and lower airways manifest by a forced expiration, which in cough is preceded by deep inspiration. These reflexes of distinct character activate the brainstem rhythm generators for inspiration and expiration strongly, but differently. They secondarily modulate the control mechanisms of various vital functions of the organism. During severe asphyxia the progressive respiratory insufficiency may induce a life-threatening cardio-respiratory failure. The sniff- and gasp-like aspiration reflex and similar spasmodic inspirations, accompanied by strong sympatho-adrenergic activation, can interrupt a severe asphyxia and reverse the developing dangerous cardiovascular and vasomotor dysfunctions, threatening with imminent loss of consciousness and death. During progressive asphyxia the reversal of gradually developing bradycardia and excessive hypotension by airway reflexes starts with reflex tachycardia and vasoconstriction, resulting in prompt hypertensive reaction, followed by renewal of cortical activity and gradual normalization of breathing. A combination of the aspiration reflex supporting venous return and the expiration or cough reflex increasing the cerebral perfusion by strong expirations, provides a powerful resuscitation and autoresuscitation potential, proved in animal experiments. They represent a simple but unique model tested in animal experiments.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms.

          Mammalian central pattern generators (CPGs) producing rhythmic movements exhibit extremely robust and flexible behavior. Network architectures that enable these features are not well understood. Here we studied organization of the brain stem respiratory CPG. By sequential rostral to caudal transections through the pontine-medullary respiratory network within an in situ perfused rat brain stem-spinal cord preparation, we showed that network dynamics reorganized and new rhythmogenic mechanisms emerged. The normal three-phase respiratory rhythm transformed to a two-phase and then to a one-phase rhythm as the network was reduced. Expression of the three-phase rhythm required the presence of the pons, generation of the two-phase rhythm depended on the integrity of Bötzinger and pre-Bötzinger complexes and interactions between them, and the one-phase rhythm was generated within the pre-Bötzinger complex. Transformation from the three-phase to a two-phase pattern also occurred in intact preparations when chloride-mediated synaptic inhibition was reduced. In contrast to the three-phase and two-phase rhythms, the one-phase rhythm was abolished by blockade of persistent sodium current (I(NaP)). A model of the respiratory network was developed to reproduce and explain these observations. The model incorporated interacting populations of respiratory neurons within spatially organized brain stem compartments. Our simulations reproduced the respiratory patterns recorded from intact and sequentially reduced preparations. Our results suggest that the three-phase and two-phase rhythms involve inhibitory network interactions, whereas the one-phase rhythm depends on I(NaP). We conclude that the respiratory network has rhythmogenic capabilities at multiple levels of network organization, allowing expression of motor patterns specific for various physiological and pathophysiological respiratory behaviors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pneumonia in acute stroke patients fed by nasogastric tube.

            Aspiration pneumonia is the most important acute complication of stroke related dysphagia. Tube feeding is usually recommended as an effective and safe way to supply nutrition in dysphagic stroke patients. To estimate the frequency of pneumonia in acute stroke patients fed by nasogastric tube, to determine risk factors for this complication, and to examine whether the occurrence of pneumonia is related to outcome. Over an 18 month period a prospective study was done on 100 consecutive patients with acute stroke who were given tube feeding because of dysphagia. Intermediate outcomes were pneumonia and artificial ventilation. Functional outcome was assessed at three months. Logistic regression and multivariate regression analyses were used, respectively, to identify variables significantly associated with the occurrence of pneumonia and those related to a poor outcome. Pneumonia was diagnosed in 44% of the tube fed patients. Most patients acquired pneumonia on the second or third day after stroke onset. Patients with pneumonia more often required endotracheal intubation and mechanical ventilation than those without pneumonia. Independent predictors for the occurrence of pneumonia were a decreased level of consciousness and severe facial palsy. The NIH stroke scale score on admission was the only independent predictor of a poor outcome. Nasogastric tubes offer only limited protection against aspiration pneumonia in patients with dysphagia from acute stroke. Pneumonia occurs mainly in the first days of the illness and patients with decreased consciousness and a severe facial palsy are especially endangered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple rhythmic states in a model of the respiratory central pattern generator.

              The three-phase respiratory pattern observed during normal breathing changes with alterations in metabolic or physiological conditions. A recent study using in situ perfused rat brain preparations demonstrated a reorganization of the respiratory pattern with sequential reduction of the brain stem respiratory network. Specifically, with removal of the pons, the normal three-phase pattern transformed to a two-phase inspiratory-expiratory pattern and, with more caudal transections, to one-phase, intrinsically generated inspiratory oscillations. A minimal neural network proposed to reproduce these transformations includes 1) a ringlike mutually inhibitory network composed of the postinspiratory, augmenting expiratory, and early-inspiratory neurons and 2) an excitatory preinspiratory neuron, with persistent sodium current (I(NaP))-dependent intrinsic bursting properties, that dynamically participates in the expiratory-inspiratory phase transition and inspiratory phase generation. We used activity-based single-neuron models and applied numerical simulations, bifurcation methods, and fast-slow decomposition to describe the behavior of this network in the functional states corresponding to the three-, two-, and one-phase oscillatory regimes, as well as to analyze the transitions between states and between respiratory phases within each state. We demonstrate that, although I(NaP) is not necessary for the generation of three- and two-phase oscillations, it contributes to control of the oscillation period in each state. We also show that the transitions between states can be produced by progressive changes of drives to particular neurons and proceed through intermediate regimes, featuring high-amplitude late-expiratory and biphasic-expiratory activities or ectopic burst generation. Our results provide important insights for understanding the state-dependent mechanisms for respiratory rhythm generation and control.
                Bookmark

                Author and article information

                Journal
                Cough
                Cough
                Cough (London, England)
                BioMed Central
                1745-9974
                2013
                22 August 2013
                : 9
                : 21
                Affiliations
                [1 ]Department of Human Physiology Faculty of Medicine, University of PJ Safarik, Kosice, Slovakia
                [2 ]Department of Pathophysiology, Faculty of Medicine, University of PJ Safarik, Kosice, Slovakia
                [3 ]Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
                Article
                1745-9974-9-21
                10.1186/1745-9974-9-21
                3828820
                23968541
                0fb76ff0-a9d5-4a9e-b971-21d110c70465
                Copyright © 2013 Tomori et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 September 2012
                : 19 August 2013
                Categories
                Review

                Respiratory medicine
                animals,asphyxia,aspiration reflex,autoresuscitation,cough,expiration reflex,resuscitation

                Comments

                Comment on this article