6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          The least-squares line and plane and the analysis of palaeomagnetic data

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times.

            The climates of Asia are affected significantly by the extent and height of the Himalayan mountains and the Tibetan plateau. Uplift of this region began about 50 Myr ago, and further significant increases in altitude of the Tibetan plateau are thought to have occurred about 10-8 Myr ago, or more recently. However, the climatic consequences of this uplift remain unclear. Here we use records of aeolian sediments from China and marine sediments from the Indian and North Pacific oceans to identify three stages of evolution of Asian climates: first, enhanced aridity in the Asian interior and onset of the Indian and east Asian monsoons, about 9-8 Myr ago; next, continued intensification of the east Asian summer and winter monsoons, together with increased dust transport to the North Pacific Ocean, about 3.6-2.6 Myr ago; and last, increased variability and possible weakening of the Indian and east Asian summer monsoons and continued strengthening of the east Asian winter monsoon since about 2.6 Myr ago. The results of a numerical climate-model experiment, using idealized stepwise increases of mountain-plateau elevation, support the argument that the stages in evolution of Asian monsoons are linked to phases of Himalaya-Tibetan plateau uplift and to Northern Hemisphere glaciation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China.

              The initial desertification in the Asian interior is thought to be one of the most prominent climate changes in the Northern Hemisphere during the Cenozoic era. But the dating of this transition is uncertain, partly because desert sediments are usually scattered, discontinuous and difficult to date. Here we report nearly continuous aeolian deposits covering the interval from 22 to 6.2 million years ago, on the basis of palaeomagnetic measurements and fossil evidence. A total of 231 visually definable aeolian layers occur as brownish loesses interbedded with reddish soils. This new evidence indicates that large source areas of aeolian dust and energetic winter monsoon winds to transport the material must have existed in the interior of Asia by the early Miocene epoch, at least 14 million years earlier than previously thought. Regional tectonic changes and ongoing global cooling are probable causes of these changes in aridity and circulation in Asia.
                Bookmark

                Author and article information

                Journal
                Science China Earth Sciences
                Sci. China Earth Sci.
                Springer Nature
                1674-7313
                1869-1897
                January 2011
                November 2010
                : 54
                : 1
                : 136-144
                Article
                10.1007/s11430-010-4126-5
                15ab470b-7940-437e-b857-127d27d5dad2
                © 2011
                History

                Comments

                Comment on this article