328
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic adaptation and trophic strategies of soil bacteria—C1- metabolism and sulfur chemolithotrophy in Starkeya novella

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The highly diverse and metabolically versatile microbial communities found in soil environments are major contributors to the global carbon, nitrogen, and sulfur cycles. We have used a combination of genome –based pathway analysis with proteomics and gene expression studies to investigate metabolic adaptation in a representative of these bacteria, Starkeya novella, which was originally isolated from agricultural soil. This bacterium was the first facultative sulfur chemolithoautotroph that was isolated and it is also able to grow with methanol and on over 39 substrates as a heterotroph. However, using glucose, fructose, methanol, thiosulfate as well as combinations of the carbon compounds with thiosulfate as growth substrates we have demonstrated here that contrary to the previous classification, S. novella is not a facultative sulfur chemolitho- and methylotroph, as the enzyme systems required for these two growth modes are always expressed at high levels. This is typical for key metabolic pathways. In addition enzymes for various pathways of carbon dioxide fixation were always expressed at high levels, even during heterotrophic growth on glucose or fructose, which suggests a role for these pathways beyond the generation of reduced carbon units for cell growth, possibly in redox balancing of metabolism. Our results then indicate that S. novella, a representative of the Xanthobacteraceae family of methylotrophic soil and freshwater dwelling bacteria, employs a mixotrophic growth strategy under all conditions tested here. As a result the contribution of this bacterium to either carbon sequestration or the release of climate active substances could vary very quickly, which has direct implications for the modeling of such processes if mixotrophy proves to be the main growth strategy for large populations of soil bacteria.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          The expanding world of methylotrophic metabolism.

          In the past few years, the field of methylotrophy has undergone a significant transformation in terms of discovery of novel types of methylotrophs, novel modes of methylotrophy, and novel metabolic pathways. This time has also been marked by the resolution of long-standing questions regarding methylotrophy and the challenge of long-standing dogmas. This chapter is not intended to provide a comprehensive review of metabolism of methylotrophic bacteria. Instead we focus on significant recent discoveries that are both refining and transforming the current understanding of methylotrophy as a metabolic phenomenon. We also review new directions in methylotroph ecology that improve our understanding of the role of methylotrophy in global biogeochemical processes, along with an outlook for the future challenges in the field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mechanisms and Evolution of Oxidative Sulfur Metabolism in Green Sulfur Bacteria

            Green sulfur bacteria (GSB) constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains, the distribution and phylogeny of enzymes involved in their oxidative sulfur metabolism was investigated. At least one homolog of sulfide:quinone oxidoreductase (SQR) is present in all strains. In all sulfur-oxidizing GSB strains except the earliest diverging Chloroherpeton thalassium, the sulfide oxidation product is further oxidized to sulfite by the dissimilatory sulfite reductase (DSR) system. This system consists of components horizontally acquired partly from sulfide-oxidizing and partly from sulfate-reducing bacteria. Depending on the strain, the sulfite is probably oxidized to sulfate by one of two different mechanisms that have different evolutionary origins: adenosine-5′-phosphosulfate reductase or polysulfide reductase-like complex 3. Thiosulfate utilization by the SOX system in GSB has apparently been acquired horizontally from Proteobacteria. SoxCD does not occur in GSB, and its function in sulfate formation in other bacteria has been replaced by the DSR system in GSB. Sequence analyses suggested that the conserved soxJXYZAKBW gene cluster was horizontally acquired by Chlorobium phaeovibrioides DSM 265 from the Chlorobaculum lineage and that this acquisition was mediated by a mobile genetic element. Thus, the last common ancestor of currently known GSB was probably photoautotrophic, hydrogenotrophic, and contained SQR but not DSR or SOX. In addition, the predominance of the Chlorobium–Chlorobaculum–Prosthecochloris lineage among cultured GSB could be due to the horizontally acquired DSR and SOX systems. Finally, based upon structural, biochemical, and phylogenetic analyses, a uniform nomenclature is suggested for sqr genes in prokaryotes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A different perspective

                Bookmark

                Author and article information

                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                17 October 2013
                2013
                : 4
                : 304
                Affiliations
                School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia QLD, Australia
                Author notes

                Edited by: Per Bengtson, Lund University, Sweden

                Reviewed by: Levente Bodrossy, CSIRO MArine and Atmospheric Research, Australia; Yasuyoshi Sakai, Kyoto University, Japan

                *Correspondence: Ulrike Kappler, School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Rd Bldg 76, St. Lucia, QLD 4072, Australia e-mail: u.kappler@ 123456uq.edu.au

                This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers in Microbiology.

                Article
                10.3389/fmicb.2013.00304
                3797975
                2e2ca05e-1144-4dd1-a7e7-7a2dec3a6d85
                Copyright © 2013 Kappler and Nouwens.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 May 2013
                : 23 September 2013
                Page count
                Figures: 4, Tables: 3, Equations: 0, References: 65, Pages: 12, Words: 8748
                Categories
                Microbiology
                Original Research Article

                Microbiology & Virology
                carbon metabolism,methylotrophy,methanol,chemolithotrophy,thiosulfate,soil bacteria,starkeya novella

                Comments

                Comment on this article