40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The functional significance of newly born neurons integrated into olfactory bulb circuits

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.

          Neurogenesis in the mammalian central nervous system is believed to end in the period just after birth; in the mouse striatum no new neurons are produced after the first few days after birth. In this study, cells isolated from the striatum of the adult mouse brain were induced to proliferate in vitro by epidermal growth factor. The proliferating cells initially expressed nestin, an intermediate filament found in neuroepithelial stem cells, and subsequently developed the morphology and antigenic properties of neurons and astrocytes. Newly generated cells with neuronal morphology were immunoreactive for gamma-aminobutyric acid and substance P, two neurotransmitters of the adult striatum in vivo. Thus, cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optogenetic stimulation of a hippocampal engram activates fear memory recall

            A specific memory is thought to be encoded by a sparse population of neurons 1,2 . These neurons can be tagged during learning for subsequent identification 3 and manipulation 4,5,6 . Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, a critical question of sufficiency remains: can one elicit the behavioral output of a specific memory by directly activating a population of neurons that was active during learning? Here we show that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behavior. We labeled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) 7,8 and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear conditioned mice with cells labeled by EYFP instead of ChR2. Finally, activation of cells labeled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context-specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion.

              Adult-born granule cells (GCs), a minor population of cells in the hippocampal dentate gyrus, are highly active during the first few weeks after functional integration into the neuronal network, distinguishing them from less active, older adult-born GCs and the major population of dentate GCs generated developmentally. To ascertain whether young and old GCs perform distinct memory functions, we created a transgenic mouse in which output of old GCs was specifically inhibited while leaving a substantial portion of young GCs intact. These mice exhibited enhanced or normal pattern separation between similar contexts, which was reduced following ablation of young GCs. Furthermore, these mutant mice exhibited deficits in rapid pattern completion. Therefore, pattern separation requires adult-born young GCs but not old GCs, and older GCs contribute to the rapid recall by pattern completion. Our data suggest that as adult-born GCs age, their function switches from pattern separation to rapid pattern completion. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                26 May 2014
                2014
                : 8
                : 121
                Affiliations
                [1] 1Institute for Virus Research, Kyoto University Kyoto, Japan
                [2] 2Kyoto University Graduate School of Biostudies Kyoto, Japan
                [3] 3World Premier International Research Initiative–Institute for Integrated Cell-Material Sciences, Kyoto University Kyoto, Japan
                [4] 4Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Kyoto, Japan
                [5] 5The Hakubi Center, Kyoto University Kyoto, Japan
                [6] 6Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology Kyoto, Japan
                Author notes

                Edited by: Luca Bonfanti, University of Turin, Italy

                Reviewed by: Francesca Ciccolini, University of Heidelberg, Germany; Liliana Bernardino, University of Beira Interior, Portugal

                *Correspondence: Ryoichiro Kageyama, Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan e-mail: rkageyam@ 123456virus.kyoto-u.ac.jp ;
                Itaru Imayoshi, The Hakubi Center, Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan e-mail: iimayosh@ 123456virus.kyoto-u.ac.jp

                This article was submitted to Neurogenesis, a section of the journal Frontiers in Neuroscience.

                †Present address: Masayuki Sakamoto, Department of Biological Sciences, Columbia University, New York, USA

                Article
                10.3389/fnins.2014.00121
                4033306
                24904263
                3daf558c-eda4-474d-9122-9d92b041bff7
                Copyright © 2014 Sakamoto, Kageyama and Imayoshi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 February 2014
                : 06 May 2014
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 113, Pages: 9, Words: 8222
                Categories
                Neuroscience
                Review Article

                Neurosciences
                neurogenesis,main olfactory bulb,accessory olfactory bulb,granule cell,periglomerular cell,lateral inhibition,behavior,neural stem cell

                Comments

                Comment on this article