3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cryptic erythrocytic infections in Plasmodium vivax, another challenge to its elimination

      , ,
      Parasitology International
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Biological properties of extracellular vesicles and their physiological functions

          In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor.

            The fate of the transferrin receptor during in vitro maturation of sheep reticulocytes has been followed using FITC- and 125I-labeled anti-transferrin-receptor antibodies. Vesicles containing peptides that comigrate with the transferrin receptor on polyacrylamide gels are released during incubation of sheep reticulocytes, tagged with anti-transferrin-receptor antibodies. Vesicle formation does not require the presence of the anti-transferrin-receptor antibodies. Using 125I-surface-labeled reticulocytes, it can be shown that the 125I-labeled material which is released is retained by an immunoaffinity column of the anti-transferrin-receptor antibody. Using reticulocytes tagged with 125I-labeled anti-transferrin-receptor antibodies to follow the formation of vesicles, it can be shown that at 0 degree C or in phosphate-buffered saline the rate of vesicle release is less than that at 37 degrees C in culture medium. There is selective externalization of the antibody-receptor complex since few other membrane proteins are found in the externalized vesicles. The anti-transferrin-receptor antibodies cause redistribution of the receptor into patches that do not appear to be required for vesicle formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite.

              Plasmodium vivax is geographically the most widely distributed cause of malaria in people, with up to 2.5 billion people at risk and an estimated 80 million to 300 million clinical cases every year--including severe disease and death. Despite this large burden of disease, P vivax is overlooked and left in the shadow of the enormous problem caused by Plasmodium falciparum in sub-Saharan Africa. The technological advances enabling the sequencing of the P vivax genome and a recent call for worldwide malaria eradication have together placed new emphasis on the importance of addressing P vivax as a major public health problem. However, because of this parasite's biology, it is especially difficult to interrupt the transmission of P vivax, and experts agree that the available methods for preventing and treating infections with P vivax are inadequate. It is thus imperative that the development of new methods and strategies become a priority. Advancing the development of such methods needs renewed emphasis on understanding the biology, pathogenesis, and epidemiology of P vivax. This Review critically examines what is known about P vivax, focusing on identifying the crucial gaps that create obstacles to the elimination of this parasite in human populations.
                Bookmark

                Author and article information

                Journal
                Parasitology International
                Parasitology International
                Elsevier BV
                13835769
                April 2022
                April 2022
                : 87
                : 102527
                Article
                10.1016/j.parint.2021.102527
                34896615
                3eeb5851-8a6e-4ea2-a12b-d38fcc85454a
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article