1,442
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coastal Staphylinidae (Coleoptera): A worldwide checklist, biogeography and natural history

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          We provide a list of the 392 described species of Staphylinidae confined to coastal habitats worldwide. The list is in taxonomic sequence by subfamily, tribe, and genus and includes 91 genera. We provide the page reference of the original description of every species and genus listed and of many synonyms. We note the existence of recent reviews, phylogenies and keys of each of the tribes and genera included. Coastal Staphylinidae contain eight subfamilies: Microsilphinae, Omaliinae, Pselaphinae, Aleocharinae, Oxytelinae, Scydmaeninae, Paederinae, and Staphylininae.

          By ‘coastal habitats’ we mean habitats existing on the sea coast and subject to inundation or at least splashing by the very highest tides. This includes rocky, boulder, coral, sandy, and muddy seashores, and at least portions of salt-marshes, estuaries, and mangrove swamps. We exclude the sand dune habitat and higher parts of sea-cliffs.

          The list notes distribution of all the species, first according to the ocean or sea on whose shores it has been recorded, and second by country (and for the larger countries by province or state). Although this distribution is undoubtedly incomplete, it provides a basis for future development of a dedicated database.

          The ‘Habitats, Habits, and Classificatory Notes’ section is designed to provide ecologists with further taxonomic and ecological information. It includes references to descriptions of the immature stages, behavior of adults and immatures, their food, natural enemies, and habitat. We would have preferred to separate these entities, but current knowledge of ecology is developed in few instances beyond natural history.

          The Pacific Ocean basin was the origin and contributed to the dispersal of the majority of specialist coastal Staphylinidae at the level of genus. However, at the level of species, species belonging to non-coastal-specialist genera are about as likely to occur on the shores of other oceans as on the shores of the Pacific. This difference is a reflection of the antiquity of coastal genera and species.

          A complete bibliography, and habitat and habitus photographs of some representative coastal Staphylinidae species are provided.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Catastrophic flood of the Mediterranean after the Messinian salinity crisis.

          The Mediterranean Sea became disconnected from the world's oceans and mostly desiccated by evaporation about 5.6 million years ago during the Messinian salinity crisis. The Atlantic waters found a way through the present Gibraltar Strait and rapidly refilled the Mediterranean 5.33 million years ago in an event known as the Zanclean flood. The nature, abruptness and evolution of this flood remain poorly constrained. Borehole and seismic data show incisions over 250 m deep on both sides of the Gibraltar Strait that have previously been attributed to fluvial erosion during the desiccation. Here we show the continuity of this 200-km-long channel across the strait and explain its morphology as the result of erosion by the flooding waters, adopting an incision model validated in mountain rivers. This model in turn allows us to estimate the duration of the flood. Although the available data are limited, our findings suggest that the feedback between water flow and incision in the early stages of flooding imply discharges of about 10(8) m(3) s(-1) (three orders of magnitude larger than the present Amazon River) and incision rates above 0.4 m per day. Although the flood started at low water discharges that may have lasted for up to several thousand years, our results suggest that 90 per cent of the water was transferred in a short period ranging from a few months to two years. This extremely abrupt flood may have involved peak rates of sea level rise in the Mediterranean of more than ten metres per day.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            Good-bye Scydmaenidae, or why the ant-like stone beetles should become megadiverse Staphylinidae sensu latissimo (Coleoptera)

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Living cells as test tubes.

              The combination of specific probes and advanced optical microscopy now allows quantitative probing of biochemical reactions in living cells. On selected systems, one can detect and track a particular protein with single-molecule sensitivity, nanometer spatial precision, and millisecond time resolution. Metabolites, usually difficult to detect, can be imaged and monitored in living cells with coherent anti-Stokes Raman scattering microscopy. Here, we describe the application of these techniques in studying gene expression, active transport, and lipid metabolism.
                Bookmark

                Author and article information

                Journal
                Zookeys
                Zookeys
                ZooKeys
                ZooKeys
                Pensoft Publishers
                1313-2989
                1313-2970
                2011
                16 June 2011
                : 107
                : 1-98
                Affiliations
                [1 ]Entomology and Nematology Department, University of Florida, Gainesville, FL 32611-0630, USA
                [2 ]Department of Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
                Author notes
                Corresponding author: Kee-Jeong Ahn ( kjahn@ 123456cnu.ac.kr ).

                Academic editor: Jan Klimaszewski

                Article
                10.3897/zookeys.107.1651
                3392188
                22792029
                3ef19511-8795-44dc-a05d-cc77cdaf4a37
                J. H. Frank, Kee-Jeong Ahn

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 September 2010
                : 14 February 2011
                Categories
                Article

                Animal science & Zoology
                intertidal staphylinidae,seashore staphylinidae,behavior,marine staphylinidae,habitat,littoral staphylinidae

                Comments

                Comment on this article