7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Combined Treatment of Tacrolimus and Everolimus Increases Oxidative Stress by Pharmacological Interactions :

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Current trends in immunosuppressive therapies for renal transplant recipients.

          Current trends in immunosuppressive therapies for renal transplant recipients are reviewed. The common premise for immunosuppressive therapies in renal transplantation is to use multiple agents to work on different immunologic targets. The use of a multidrug regimen allows for pharmacologic activity at several key steps in the T-cell replication process and lower dosages of each individual agent, thereby producing fewer drug-related toxicities. In general, there are three stages of clinical immunosuppression: induction therapy, maintenance therapy, and treatment of an established acute rejection episode. Only immunosuppressive therapies used for maintenance therapy are discussed in detail in this review. The most common maintenance immunosuppressive agents can be divided into five classes: (1) the calcineurin inhibitors (CNIs) (cyclosporine and tacrolimus), (2) costimulation blockers (belatacept), (3) mammalian target of rapamycin inhibitors (sirolimus and everolimus), (4) antiproliferatives (azathioprine and mycophenolic acid derivatives), and (5) corticosteroids. Immunosuppressive regimens vary among transplantation centers but most often include a CNI and an adjuvant agent, with or without corticosteroids. Selection of appropriate immunosuppressive regimens should be patient specific, taking into account the medications' pharmacologic properties, adverse-event profile, and potential drug-drug interactions, as well as the patient's preexisting diseases, risk of rejection, and medication regimen. Advancements in transplant immunosuppression have resulted in a significant reduction in acute cellular rejection and a modest increase in long-term patient and graft survival. Because the optimal immunosuppression regimen is still unknown, immunosuppressant use should be influenced by institutional preference and tailored to the immunologic risk of the patient and adverse-effect profile of the drug.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Ginseng Treatment Attenuates Chronic Cyclosporine Nephropathy via Reducing Oxidative Stress in an Experimental Mouse Model

            Background: This study was performed to investigate whether ginseng extract has a protective effect in an experimental mouse model of chronic cyclosporine (CsA) nephropathy. Methods: Mice were treated with CsA (30 mg/kg/day, subcutaneously) with or without Korean red ginseng extract (KRG) (0.2, 0.4 g/kg/day, orally) on a 0.01% salt diet for 4 weeks. The effect of KRG on CsA-induced renal injury was evaluated by assessing renal function and pathology, mediators of inflammation, tubulointerstitial fibrosis and apoptotic cell death. Using an in vitro model, we also examined the effect of KRG on CsA-treated proximal tubular cells (HK-2). Oxidative stress was measured by assessing 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels in 24-hour urine, tissue sections, and culture media. Results: Four weeks of CsA treatment caused renal dysfunction, typical pathologic lesions and apoptotic cell death. KRG treatment reduced serum creatinine and blood urea nitrogen and histopathology and increased creatinine clearance. Proinflammatory and profibrotic molecules such as induced nitric oxide synthase, cytokines, transforming growth factor (TGF)-β1 and TGF-β1-inducible gene h3 and apoptotic cell death, also decreased with KRG treatment. Consistent with these results, in vitro studies showed that addition of KRG protected against CsA-induced morphological changes, cytotoxicity, inflammation, and apoptotic cell death as demonstrated by annexin V binding. These changes were accompanied by decrease in the level of 8-OHdG in urine and culture supernatant after KRG treatment. Conclusion: The results of our in vivo and in vitro studies demonstrate that KRG has a protective effect in CsA-induced renal injury via reducing oxidative stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Established and Newly Proposed Mechanisms of Chronic Cyclosporine Nephropathy

              Cyclosporine (CsA) has improved patient and graft survival rates following solid-organ transplantation and has shown significant clinical benefits in the management of autoimmune diseases. However, the clinical use of CsA is often limited by acute or chronic nephropathy, which remains a major problem. Acute nephropathy depends on the dosage of CsA and appears to be caused by a reduction in renal blood flow related to afferent arteriolar vasoconstriction. However, the mechanisms underlying chronic CsA nephropathy are not completely understood. Activation of the intrarenal renin-angiotensin system (RAS), increased release of endothelin-1, dysregulation of nitric oxide (NO) and NO synthase, up-regulation of transforming growth factor-beta1 (TGF-β1), inappropriate apoptosis, stimulation of inflammatory mediators, enhanced innate immunity, endoplasmic reticulum stress, and autophagy have all been implicated in the pathogenesis of chronic CsA nephropathy. Reducing the CsA dosage or using other renoprotective drugs (angiotensin II receptor antagonist, mycophenolate mofetil, and statins, etc.) may ameliorate chronic CsA-induced renal injury. This review discusses old and new concepts in CsA nephropathy and preventive strategies for this clinical dilemma.
                Bookmark

                Author and article information

                Journal
                Transplantation
                Transplantation
                Ovid Technologies (Wolters Kluwer Health)
                0041-1337
                2014
                July 2014
                : 98
                : 1
                : 22-28
                Article
                10.1097/TP.0000000000000146
                24825522
                66e9d4cd-19cf-4b2c-98de-e059581450be
                © 2014
                History

                Comments

                Comment on this article