68
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Triterpenoids have been used for medicinal purposes in many Asian countries because of their anti-inflammatory, antioxidant, antiproliferative, anticancer, and anticarcinogenic properties. Bardoxolone methyl, the C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) known as CDDO-Me or RTA 402, is one of the derivatives of synthetic triterpenoids. CDDO-Me has been used for the treatment of chronic kidney disease, cancer (including leukemia and solid tumors), and other diseases. In this review, we will update our knowledge of the clinical pharmacokinetics and pharmacodynamics of CDDO-Me, highlighting its clinical benefits and the underlying mechanisms involved. The role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)/the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the therapeutic activities of CDDO-Me will be discussed. CDDO-Me contains α,β-unsaturated carbonyl groups on rings A and C that can generate reversible adducts with the thiol groups of Cys residues in target proteins such as Keap1 and IκB kinase. At low nanomolar concentrations, CDDO-Me protects the cells against oxidative stress via inhibition of reactive oxygen species generation, while CDDO-Me at low micromolar concentrations induces apoptosis by increasing reactive oxygen species and decreasinging intracellular glutathione levels. Through Keap1/Nrf2 and nuclear factor-κB pathways, this agent can modulate the activities of a number of important proteins that regulate inflammation, redox balance, cell proliferation and programmed cell death. In a Phase I trial in cancer patients, CDDO-Me was found to have a slow and saturable oral absorption, a relatively long terminal phase half-life (39 hours at 900 mg/day), nonlinearity (dose-dependent) at high doses (600–1,300 mg/day), and high interpatient variability. As a multifunctional agent, CDDO-Me has improved the renal function in patients with chronic kidney disease associated with type 2 diabetes. CDDO-Me has shown a promising anticancer effect in a Phase I trial. This agent is generally well tolerated, but it may increase adverse cardiovascular events. Presently, it is being further tested for the treatment of patients with chronic kidney disease, cancer, and pulmonary arterial hypertension.

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity.

          Myeloid-derived suppressor cells (MDSC) play an important role in the cellular network regulating immune responses in cancer, chronic infectious diseases, autoimmunity, and in other pathological conditions. Morphological, phenotypic and functional heterogeneity is a hallmark of MDSC. This heterogeneity demonstrates the plasticity of this immune suppressive myeloid compartment, and shows how various tumors and infectious agents can have similar biological effects on myeloid cells despite the differences in the factors that they produce to influence the immune system; however, such a heterogeneity creates ambiguity in the definition of MDSC as well as confusion regarding the origin and fate of these cells. In this review, we will discuss recent findings that help to better clarify these issues and to determine the place of MDSC within the myeloid cell lineage. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase.

            NF-kappaB is a critical activator of genes involved in inflammation and immunity. Pro-inflammatory cytokines activate the IkappaB kinase (IKK) complex that phosphorylates the NF-kappaB inhibitors, triggering their conjugation with ubiquitin and subsequent degradation. Freed NF-kappaB dimers translocate to the nucleus and induce target genes, including the one for cyclo-oxygenase 2 (COX2), which catalyses the synthesis of pro-inflammatory prostaglandins, in particular PGE. At late stages of inflammatory episodes, however, COX2 directs the synthesis of anti-inflammatory cyclopentenone prostaglandins, suggesting a role for these molecules in the resolution of inflammation. Cyclopentenone prostaglandins have been suggested to exert anti-inflammatory activity through the activation of peroxisome proliferator-activated receptor-gamma. Here we demonstrate a novel mechanism of antiinflammatory activity which is based on the direct inhibition and modification of the IKKbeta subunit of IKK. As IKKbeta is responsible for the activation of NF-kappaB by pro-inflammatory stimuli, our findings explain how cyclopentenone prostaglandins function and can be used to improve the utility of COX2 inhibitors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer.

              Synthetic oleanane triterpenoids and rexinoids are two new classes of multifunctional drugs. They are neither conventional cytotoxic agents, nor are they monofunctional drugs that uniquely target single steps in signal transduction pathways. Synthetic oleanane triterpenoids have profound effects on inflammation and the redox state of cells and tissues, as well as being potent anti-proliferative and pro-apoptotic agents. Rexinoids are ligands for the nuclear receptor transcription factors known as retinoid X receptors. Both classes of agents can prevent and treat cancer in experimental animals. These drugs have unique molecular and cellular mechanisms of action and might prove to be synergistic with standard anti-cancer treatments.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2014
                23 October 2014
                : 8
                : 2075-2088
                Affiliations
                [1 ]Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
                [2 ]Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
                [3 ]Department of Colon-rectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
                [4 ]Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China
                Author notes
                Correspondence: Shu-Feng Zhou, Department of Pharmaceutical Sciences, College of Pharmacy University of South Florida, 12901 Bruce B Down Boulevard, MDC30 Tampa, FL 33612, USA, Tel +1 813 974 6276, Fax +1 813 905 9885, Email szhou@ 123456health.usf.edu
                Zhi-Xu He, Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, 9 Beijing Road, Guiyang 550004, Guizhou, People’s Republic of China, Tel +1 86 851 690 8118, Fax +1 86 851 678 3850, Email hzx@ 123456gmc.edu.cn
                Article
                dddt-8-2075
                10.2147/DDDT.S68872
                4211867
                25364233
                6d575950-5960-4a6d-b1d0-6168c1644470
                © 2014 Wang et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                cddo-me,chronic kidney disease,cancer,pulmonary arterial hypertension,nrf2,keap1,nf-κb

                Comments

                Comment on this article