86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims/hypothesis

          Endothelial glycocalyx perturbation contributes to increased vascular permeability. In the present study we set out to evaluate whether: (1) glycocalyx is perturbed in individuals with type 2 diabetes mellitus, and (2) oral glycocalyx precursor treatment improves glycocalyx properties.

          Methods

          Male participants with type 2 diabetes ( n = 10) and controls ( n = 10) were evaluated before and after 2 months of sulodexide administration (200 mg/day). The glycocalyx dimension was estimated in two different vascular beds using sidestream dark field imaging and combined fluorescein/indocyanine green angiography for sublingual and retinal vessels, respectively. Transcapillary escape rate of albumin (TER alb) and hyaluronan catabolism were assessed as measures of vascular permeability.

          Results

          Both sublingual dimensions (0.64 [0.57–0.75] μm vs 0.78 [0.71–0.85] μm, p < 0.05, medians [interquartile range]) and retinal glycocalyx dimensions (5.38 [4.88–6.59] μm vs 8.89 [4.74–11.84] μm, p < 0.05) were reduced in the type 2 diabetes group compared with the controls whereas TER alb was increased (5.6 ± 2.3% vs 3.7 ± 1.7% in the controls, p < 0.05). In line with these findings, markers of hyaluronan catabolism were increased with diabetes (hyaluronan 137 ± 29 vs 81 ± 8 ng/ml and hyaluronidase 78 ± 4 vs 67 ± 2 U/ml, both p < 0.05). Sulodexide increased both the sublingual and retinal glycocalyx dimensions in participants with diabetes (to 0.93 [0.83–0.99] μm and to 5.88 [5.33–6.26] μm, respectively, p < 0.05). In line, a trend towards TER alb normalisation (to 4.0 ± 2.3%) and decreases in plasma hyaluronidase (to 72 ± 2 U/ml, p < 0.05) were observed in the diabetes group.

          Conclusion/interpretation

          Type 2 diabetes is associated with glycocalyx perturbation and increased vascular permeability, which are partially restored following sulodexide administration. Further studies are warranted to determine whether long-term treatment with sulodexide has a beneficial effect on cardiovascular risk.

          Trial registration

          www.trialregister.nl NTR780/ http://isrctn.org ISRCTN82695186

          Funding

          An unrestricted Novartis Foundation for Cardiovascular Excellence grant (2006) to M. Nieuwdorp/E. S. G. Stroes, Dutch Heart Foundation (grant number 2005T037)

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes.

          We aimed to examine the mortality rates, excess mortality and causes of death in diabetic patients from ten centres throughout the world. A mortality follow-up of 4713 WHO Multinational Study of Vascular Disease in Diabetes (WHO MSVDD) participants from ten centres was carried out, causes of death were ascertained and age-adjusted mortality rates were calculated by centre, sex and type of diabetes. Excess mortality, compared with the background population, was assessed in terms of standardised mortality ratios (SMRs) for each of the 10 cohorts. Cardiovascular disease was the most common underlying cause of death, accounting for 44 % of deaths in Type I (insulin-dependent) diabetes mellitus and 52 % of deaths in Type II (non-insulin-dependent) diabetes mellitus. Renal disease accounted for 21% of deaths in Type I diabetes and 11% in Type II diabetes. For Type I diabetes, all-cause mortality rates were highest in Berlin men and Warsaw women, and lowest in London men and Zagreb women. For Type II diabetes, rates were highest in Warsaw men and Oklahoma women and lowest in Tokyo men and women. Age adjusted mortality rates and SMRs were generally higher in patients with Type I diabetes compared with those with Type II diabetes. Men and women in the Tokyo cohort had a very low excess mortality when compared with the background population. This study confirms the importance of cardiovascular disease as the major cause of death in people with both types of diabetes. The low excess mortality in the Japanese cohort could have implications for the possible reduction of the burden of mortality associated with diabetes in other parts of the world.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Albuminuria reflects widespread vascular damage. The Steno hypothesis.

            Albuminuria in Type 1 (insulin-dependent) diabetes is not only an indication of renal disease, but a new, independent risk-marker of proliferative retinopathy and macroangiopathy. The coincidence of generalised vascular dysfunction and albuminuria, advanced mesangial expansion, proliferative retinopathy, and severe macroangiopathy suggests a common cause of albuminuria and the severe renal and extrarenal complications associated with it. Enzymes involved in the metabolism of anionic components of the extracellular matrix (e.g. heparan sulphate proteoglycan) vulnerable to hyperglycaemia, seem to constitute the primary cause of albuminuria and the associated complications. Genetic polymorphism of such enzymes is possibly the main reason for variation in susceptibility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface.

              A thick endothelial glycocalyx provides the endothelial surface with a nonadherent shield. Oxidized LDL (Ox-LDL) degrades the endothelial glycocalyx. We hypothesized that glycocalyx degradation stimulates leukocyte-endothelial cell adhesion, whereas intravascular supplementation with sulfated polysaccharides reconstitutes the endothelial glycocalyx and attenuates Ox-LDL-induced leukocyte-endothelial cell adhesion. Degradation of the endothelial glycocalyx by local microinjection of heparitinase (10 to 50 U/mL) into mouse cremaster venules dose-dependently increased the number of adherent leukocytes. Systemic administration of Ox-LDL (0.4 mg/100 g body weight) induced 10.1+/-0.9 adherent leukocytes/100 microm at 60 minutes. In the venules perfused with 500-kDa dextran sulfate (1 mg/mL), the number of adherent leukocytes at 60 minutes after Ox-LDL bolus application was not influenced (9.2+/-1.0 leukocytes/100 microm). However, the venules locally perfused with heparan sulfate (10 mg/mL) or heparin (1 mg/mL) displayed a significantly lower number of adherent leukocytes induced by Ox-LDL: 5.1+/-0.7 and 5.4+/-0.9 leukocytes/100 microm, respectively (P<0.05). Fluorescently labeled heparan sulfate and heparin, but not dextran sulfate, attached to the venule luminal surface after Ox-LDL administration. Endothelial glycocalyx degradation stimulates leukocyte immobilization at the endothelial surface. Circulating heparan sulfate and heparin attach to the venule wall and attenuate Ox-LDL-induced leukocyte immobilization.
                Bookmark

                Author and article information

                Contributors
                e.s.stroes@amc.uva.nl
                Journal
                Diabetologia
                Diabetologia
                Springer-Verlag (Berlin/Heidelberg )
                0012-186X
                1432-0428
                25 September 2010
                25 September 2010
                December 2010
                : 53
                : 12
                : 2646-2655
                Affiliations
                [1 ]Department of Vascular Medicine, Academic Medical Centre, Room F4.211, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
                [2 ]Department of Internal Medicine, Academic Medical Centre, Amsterdam, the Netherlands
                [3 ]Department of Nuclear Medicine, Academic Medical Centre, Amsterdam, the Netherlands
                [4 ]Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
                [5 ]Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
                Article
                1910
                10.1007/s00125-010-1910-x
                2974920
                20865240
                729c4340-11d9-42cb-b7b3-6bdc26bfc5aa
                © The Author(s) 2010
                History
                : 16 June 2010
                : 16 August 2010
                Categories
                Article
                Custom metadata
                © Springer-Verlag 2010

                Endocrinology & Diabetes
                vascular permeability,endothelial glycocalyx,diabetes mellitus type 2,hyaluronan,sulodexide

                Comments

                Comment on this article