25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum Level of Soluble Receptor for Advanced Glycation End Products Is Associated with A Disintegrin And Metalloproteinase 10 in Type 1 Diabetes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of diabetic complications, and soluble forms of the receptor (sRAGE) can counteract the detrimental action of the full-length receptor by acting as decoy. Soluble RAGE is produced by alternative splicing [endogenous secretory RAGE (esRAGE)] and/or by proteolytic cleavage of the membrane-bound receptor. We have investigated the role of A Disintegrin And Metalloproteinase 10 (ADAM10) in the ectodomain shedding of RAGE.

          Methods

          Constitutive and insulin-induced shedding of RAGE in THP-1 macrophages by ADAM10 was evaluated using an ADAM10-specific metalloproteinase inhibitor. Serum ADAM10 level was measured in type 1 diabetes and control subjects, and the association with serum soluble RAGE was determined. Serum total sRAGE and esRAGE were assayed by ELISA and the difference between total sRAGE and esRAGE gave an estimated measure of soluble RAGE formed by cleavage (cRAGE).

          Results

          RAGE shedding (constitutive and insulin-induced) was significantly reduced after inhibition of ADAM10 in macrophages, and insulin stimulated ADAM10 expression and activity. Diabetic subjects have higher serum total sRAGE and esRAGE (p<0.01) than controls, and serum ADAM10 was also increased (p<0.01). Serum ADAM10 correlated with serum cRAGE in type 1 diabetes (r = 0.40, p<0.01) and in controls (r = 0.31. p<0.01) but no correlations were seen with esRAGE. The association remained significant after adjusting for age, gender, BMI, smoking status and HbA1c.

          Conclusion

          Our data suggested that ADAM10 contributed to the shedding of RAGE. Serum ADAM10 level was increased in type 1 diabetes and was a significant determinant of circulating cRAGE.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17.

          Cleavage and release (shedding) of membrane proteins is a critical regulatory step in many normal and pathological processes. Evidence suggests that the antiaging transmembrane protein Klotho (KL) is shed from the cell surface by proteolytic cleavage. In this study, we attempted to identify the enzymes responsible for the shedding of KL by treating KL-transfected COS-7 cells with a panel of proteinase inhibitors and measuring cleavage products by Western blot. We report that metalloproteinase inhibitors, including EDTA, EGTA, and TAPI-1, inhibit the shedding of KL, whereas insulin increases shedding. The effects of the inhibitors in KL-transfected COS-7 cells were repeated in studies on rat kidney slices ex vivo, which validates the use of COS-7 cells as our model system. Tissue inhibitor of metalloproteinase (Timp)-3 effectively inhibits KL cleavage, whereas Timp-1 and Timp-2 do not, a profile that indicates the involvement of members of the A Desintegrin and Metalloproteinase (ADAM) family. Cotransfection of KL with either ADAM10 or ADAM17 enhances KL cleavage, whereas cotransfection of KL with small interference RNAs specific to ADAM10 and ADAM17 inhibits KL secretion. These results indicate that KL shedding is mediated mainly by ADAM10 and ADAM17 in KL-transfected COS-7 cells. The effect of insulin is abolished when ADAM10 or ADAM17 are silenced. Furthermore, we demonstrate that the effect of insulin on KL shedding is inhibited by wortmannin, showing that insulin acts through a PI3K-dependent pathway. Insulin enhances KL shedding without increasing ADAM10 and ADAM17 mRNA and protein levels, suggesting that it acts by stimulating their proteolytic activities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification, classification, and expression of RAGE gene splice variants.

            The receptor for advanced glycation end-products (RAGE) is a single-transmembrane, multiligand receptor of the immunoglobulin superfamily. RAGE up-regulation is implicated in numerous pathological states including vascular disease, diabetes, cancer, and neurodegeneration. The understanding of the regulation of RAGE is important in both disease pathogenesis and normal homeostasis. Here, we demonstrate the characterization and identification of human RAGE splice variants by analysis of RAGE cDNA from tissue and cells. We identified a vast range of splice forms that lead to changes in the protein coding region of RAGE, which we have classified according to the Human Gene Nomenclature Committee (HGNC). These resulted in protein changes in the ligand-binding domain of RAGE or the removal of the transmembrane domain and cytosolic tail. Analysis of splice variants for premature termination codons reveals approximately 50% of identified variants are targeted to the nonsense-mediated mRNA decay pathway. Expression analysis revealed the RAGE_v1 variant to be the primary secreted soluble isoform of RAGE. Taken together, identification of functional splice variants of RAGE underscores the biological diversity of the RAGE gene and will aid in the understanding of the gene in the normal and pathological state.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The "A Disintegrin And Metalloproteases" ADAM10 and ADAM17: novel drug targets with therapeutic potential?

              Proteolytic ectodomain release, a process known as "shedding", has been recognised as a key mechanism for regulating the function of a diversity of cell surface proteins. A Disintegrin And Metalloproteinases (ADAMs) have emerged as the major proteinase family that mediates ectodomain shedding. Dysregulation of ectodomain shedding is associated with autoimmune and cardiovascular diseases, neurodegeneration, infection, inflammation and cancer. Therefore, ADAMs are increasingly regarded as attractive targets for novel therapies. ADAM10 and its close relative ADAM17 (TNF-alpha converting enzyme (TACE)) have been studied in particular in the context of ectodomain shedding and have been demonstrated as key molecules in most of the shedding events characterised to date. Whereas the level of expression of ADAM10 may be of importance in cancer and neurodegenerative disorders, ADAM17 mainly coordinates pro- and anti-inflammatory activities during immune response. Despite the high therapeutical potential of ADAM inhibition, all clinical trials using broad-spectrum metalloprotease inhibitors have failed so far. This review will cover the emerging roles of both ADAM10 and ADAM17 in the regulation of major physiological and developmental pathways and will discuss the suitability of specifically modulating the activities of both proteases as a feasible way to inhibit inflammatory states, cancer and neurodegeneration. Copyright © 2010 Elsevier GmbH. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                1 September 2015
                2015
                : 10
                : 9
                : e0137330
                Affiliations
                [1 ]Department of Medicine, University of Hong Kong, Hong Kong, China
                [2 ]Department of Medicine, Royal Free & University College London Medical School, London, United Kingdom
                National Center for Scientific Research Demokritos, GREECE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KCBT ACHL SWMS. Performed the experiments: ACHL SWMS. Analyzed the data: KCBT ACHL SWMS JKYL. Contributed reagents/materials/analysis tools: KCBT ACHL SWMS. Wrote the paper: KCBT ACHL DJB. Recruited subjects and collected clinical data: JKYL YW.

                Article
                PONE-D-15-13666
                10.1371/journal.pone.0137330
                4556489
                26325204
                858badba-aeb8-4a1a-b892-68780c02886c
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 31 March 2015
                : 15 August 2015
                Page count
                Figures: 3, Tables: 1, Pages: 11
                Funding
                Supported by the Hong Kong Research Grants Council Research Fund (HKU777712M awarded to KCBT).
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article