3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Food sensory characteristics: their unconsidered roles in the feeding behaviour of domestic ruminants

      , ,
      animal
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When domestic ruminants are faced with food diversity, they can use pre-ingestive information (i.e. food sensory characteristics perceived by the animal before swallowing the food) and post-ingestive information (i.e. digestive and metabolic consequences, experienced by the animal after swallowing the food) to evaluate the food and make decisions to select a suitable diet. The concept of palatability is essential to understand how pre- and post-ingestive information are interrelated. It refers to the hedonic value of the food without any immediate effect of post-ingestive consequences and environmental factors, but with the influence of individual characteristics, such as animal's genetic background, internal state and previous experiences. In the literature, the post-ingestive consequences are commonly considered as the main force that influences feeding behaviour whereas food sensory characteristics are only used as discriminatory agents. This discriminatory role is indeed important for animals to be aware of their feeding environment, and ruminants are able to use their different senses either singly or in combination to discriminate between different foods. However, numerous studies on ruminants’ feeding behaviour demonstrate that the role of food sensory characteristics has been underestimated or simplified; they could play at least two other roles. First, some sensory characteristics also possess a hedonic value which influences ruminants’ intake, preferences and food learning independently of any immediate post-ingestive consequences. Further, diversity of food sensory characteristics has a hedonic value, as animals prefer an absence of monotony in food sensory characteristics at similar post-ingestive consequences. Second, some of these food sensory characteristics become an indicator of post-ingestive consequences after their initial hedonic value has acquired a positive or a negative value via previous individual food learning or evolutionary processes. These food sensory characteristics thus represent cues that could help ruminants to anticipate the post-ingestive consequences of a food and to improve their learning efficiency, especially in complex environments. This review then suggests that food sensory characteristics could be of importance to provide pleasure to animals, to increase palatability of a food and to help them learn in complex feeding situations which could improve animal welfare and productivity.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Is the bitter rejection response always adaptive?

          The bitter rejection response consists of a suite of withdrawal reflexes and negative affective responses. It is generally assumed to have evolved as a way to facilitate avoidance of foods that are poisonous because they usually taste bitter to humans. Using previously published studies, the present paper examines the relationship between bitterness and toxicity in mammals, and then assesses the ecological costs and benefits of the bitter rejection response in carnivorous, omnivorous, and herbivorous (grazing and browsing) mammals. If the bitter rejection response accurately predicts the potential toxicity of foods, then one would expect the threshold for the response to be lower for highly toxic compounds than for nontoxic compounds. The data revealed no such relationship. Bitter taste thresholds varied independently of toxicity thresholds, indicating that the bitter rejection response is just as likely to be elicited by a harmless bitter food as it is by a harmful one. Thus, it is not necessarily in an animal's best interest to have an extremely high or low bitter threshold. Based on this observation, it was hypothesized that the adaptiveness of the bitter rejection response depends upon the relative occurrence of bitter and potentially toxic compounds in an animal's diet. Animals with a relatively high occurrence of bitter and potentially toxic compounds in their diet (e.g., browsing herbivores) were predicted to have evolved a high bitter taste threshold and tolerance to dietary poisons. Such an adaptation would be necessary because a browser cannot "afford" to reject all foods that are bitter and potentially toxic without unduly restricting its dietary options. At the other extreme, animals that rarely encounter bitter and potentially toxic compounds in their diet (e.g., carnivores) were predicted to have evolved a low bitter threshold. Carnivores could "afford" to utilize such a stringent rejection mechanism because foods containing bitter and potentially toxic compounds constitute a small portion of their diet. Since the low bitter threshold would reduce substantially the risk of ingesting anything poisonous, carnivores were also expected to have a relatively low tolerance to dietary poisons. This hypothesis was supported by a comparison involving 30 mammal species, in which a suggestive relationship was found between quinine hydrochloride sensitivity and trophic group, with carnivores > omnivores > grazers > browsers. Further support for the hypothesis was provided by a comparison across browsers and grazers in terms of the production of tannin-binding salivary proteins, which probably represent an adaptation for reducing the bitterness and astringency of tannins.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Receptors and transduction in taste.

            Taste is the sensory system devoted primarily to a quality check of food to be ingested. Although aided by smell and visual inspection, the final recognition and selection relies on chemoreceptive events in the mouth. Emotional states of acute pleasure or displeasure guide the selection and contribute much to our quality of life. Membrane proteins that serve as receptors for the transduction of taste have for a long time remained elusive. But screening the mass of genome sequence data that have recently become available has provided a new means to identify key receptors for bitter and sweet taste. Molecular biology has also identified receptors for salty, sour and umami taste.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Postingestive Feedback as an Elementary Determinant of Food Preference and Intake in Ruminants

                Bookmark

                Author and article information

                Journal
                animal
                Animal
                Cambridge University Press (CUP)
                1751-7311
                1751-732X
                May 2013
                December 06 2012
                May 2013
                : 7
                : 5
                : 806-813
                Article
                10.1017/S1751731112002145
                92d96223-fb62-46b8-a446-95129e39cd0f
                © 2013

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article