129
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A specialized subset of VE-cadherin adhesions senses cytoskeletal force and recruits Vinculin to control the stability of endothelial cell–cell junctions during their force-dependent remodeling.

          Abstract

          To remodel endothelial cell–cell adhesion, inflammatory cytokine- and angiogenic growth factor–induced signals impinge on the vascular endothelial cadherin (VE-cadherin) complex, the central component of endothelial adherens junctions. This study demonstrates that junction remodeling takes place at a molecularly and phenotypically distinct subset of VE-cadherin adhesions, defined here as focal adherens junctions (FAJs). FAJs are attached to radial F-actin bundles and marked by the mechanosensory protein Vinculin. We show that endothelial hormones vascular endothelial growth factor, tumor necrosis factor α, and most prominently thrombin induced the transformation of stable junctions into FAJs. The actin cytoskeleton generated pulling forces specifically on FAJs, and inhibition of Rho-Rock-actomyosin contractility prevented the formation of FAJs and junction remodeling. FAJs formed normally in cells expressing a Vinculin binding-deficient mutant of α-catenin, showing that Vinculin recruitment is not required for adherens junction formation. Comparing Vinculin-devoid FAJs to wild-type FAJs revealed that Vinculin protects VE-cadherin junctions from opening during their force-dependent remodeling. These findings implicate Vinculin-dependent cadherin mechanosensing in endothelial processes such as leukocyte extravasation and angiogenesis.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          alpha-Catenin as a tension transducer that induces adherens junction development.

          Adherens junctions (AJs), which are organized by adhesion proteins and the underlying actin cytoskeleton, probably sense pulling forces from adjacent cells and modulate opposing forces to maintain tissue integrity, but the regulatory mechanism remains unknown at the molecular level. Although the possibility that alpha-catenin acts as a direct linker between the membrane and the actin cytoskeleton for AJ formation and function has been minimized, here we show that alpha-catenin recruits vinculin, another main actin-binding protein of AJs, through force-dependent changes in alpha-catenin conformation. We identified regions in the alpha-catenin molecule that are required for its force-dependent binding of vinculin by introducing mutant alpha-catenin into cells and using in vitro binding assays. Fluorescence recovery after photobleaching analysis for alpha-catenin mobility and the existence of an antibody recognizing alpha-catenin in a force-dependent manner further supported the notion that alpha-catenin is a tension transducer that translates mechanical stimuli into a chemical response, resulting in AJ development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of adherens junctions and VE-cadherin in the control of vascular permeability.

            Endothelial cells control the passage of plasma constituents and circulating cells from blood to the underlying tissues. This specialized function is lost or impaired in several pathological conditions - including inflammation, sepsis, ischemia and diabetes - which leads to severe, and sometimes fatal, organ dysfunction. Endothelial permeability is regulated in part by the dynamic opening and closure of cell-cell adherens junctions (AJs). In endothelial cells, AJs are largely composed of vascular endothelial cadherin (VE-cadherin), an endothelium-specific member of the cadherin family of adhesion proteins that binds, via its cytoplasmic domain, to several protein partners, including p120, beta-catenin and plakoglobin. Endogenous pathways that increase vascular permeability affect the function and organization of VE-cadherin and other proteins at AJs in diverse ways. For instance, several factors, including vascular endothelial growth factor (VEGF), induce the tyrosine phosphorylation of VE-cadherin, which accompanies an increase in vascular permeability and leukocyte diapedesis; in addition, the internalization and cleavage of VE-cadherin can cause AJs to be dismantled. From the knowledge of how AJ organization can be modulated, it is possible to formulate several pharmacological strategies to control the barrier function of the endothelium. We discuss the possible use of inhibitors of SRC and other kinases, of agents that increase cAMP levels, and of inhibitors of lytic enzymes as pharmacological tools for decreasing endothelial permeability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vinculin controls focal adhesion formation by direct interactions with talin and actin

              Focal adhesions (FAs) regulate cell migration. Vinculin, with its many potential binding partners, can interconnect signals in FAs. Despite the well-characterized structure of vinculin, the molecular mechanisms underlying its action have remained unclear. Here, using vinculin mutants, we separate the vinculin head and tail regions into distinct functional domains. We show that the vinculin head regulates integrin dynamics and clustering and the tail regulates the link to the mechanotransduction force machinery. The expression of vinculin constructs with unmasked binding sites in the head and tail regions induces dramatic FA growth, which is mediated by their direct interaction with talin. This interaction leads to clustering of activated integrin and an increase in integrin residency time in FAs. Surprisingly, paxillin recruitment, induced by active vinculin constructs, occurs independently of its potential binding site in the vinculin tail. The vinculin tail, however, is responsible for the functional link of FAs to the actin cytoskeleton. We propose a new model that explains how vinculin orchestrates FAs.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                5 March 2012
                : 196
                : 5
                : 641-652
                Affiliations
                [1 ]Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre Utrecht, 3584 CT, Utrecht, Netherlands
                [2 ]Department of Molecular Cancer Research, Centre of Biomedical Genetics and Cancer Genomics Centre, University Medical Centre Utrecht, 3584 CG, Netherlands
                [3 ]Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, Netherlands
                Author notes
                Correspondence to Stephan Huveneers: s.huveneers@ 123456hubrecht.eu ; and Johan de Rooij: j.derooij@ 123456hubrecht.eu

                J. Oldenburg and E. Spanjaard contributed equally to this paper.

                Article
                201108120
                10.1083/jcb.201108120
                3307691
                22391038
                a1c97b75-b89b-4e14-bb54-a4df44f2e059
                © 2012 Huveneers et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 19 August 2011
                : 31 January 2012
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article