18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Event Rates, Hospital Utilization, and Costs Associated with Major Complications of Diabetes: A Multicountry Comparative Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Philip Clarke and colleagues examined patient-level data for over 11,000 participants with type 2 diabetes from 20 countries and find that major complications of diabetes significantly increased hospital use and costs across settings.

          Abstract

          Background

          Diabetes imposes a substantial burden globally in terms of premature mortality, morbidity, and health care costs. Estimates of economic outcomes associated with diabetes are essential inputs to policy analyses aimed at prevention and treatment of diabetes. Our objective was to estimate and compare event rates, hospital utilization, and costs associated with major diabetes-related complications in high-, middle-, and low-income countries.

          Methods and Findings

          Incidence and history of diabetes-related complications, hospital admissions, and length of stay were recorded in 11,140 patients with type 2 diabetes participating in the Action in Diabetes and Vascular Disease (ADVANCE) study (mean age at entry 66 y). The probability of hospital utilization and number of days in hospital for major events associated with coronary disease, cerebrovascular disease, congestive heart failure, peripheral vascular disease, and nephropathy were estimated for three regions (Asia, Eastern Europe, and Established Market Economies) using multiple regression analysis. The resulting estimates of days spent in hospital were multiplied by regional estimates of the costs per hospital bed-day from the World Health Organization to compute annual acute and long-term costs associated with the different types of complications. To assist, comparability, costs are reported in international dollars (Int$), which represent a hypothetical currency that allows for the same quantities of goods or services to be purchased regardless of country, standardized on purchasing power in the United States. A cost calculator accompanying this paper enables the estimation of costs for individual countries and translation of these costs into local currency units. The probability of attending a hospital following an event was highest for heart failure (93%–96% across regions) and lowest for nephropathy (15%–26%). The average numbers of days in hospital given at least one admission were greatest for stroke (17–32 d across region) and heart failure (16–31 d) and lowest for nephropathy (12–23 d). Considering regional differences, probabilities of hospitalization were lowest in Asia and highest in Established Market Economies; on the other hand, lengths of stay were highest in Asia and lowest in Established Market Economies. Overall estimated annual hospital costs for patients with none of the specified events or event histories ranged from Int$76 in Asia to Int$296 in Established Market Economies. All complications included in this analysis led to significant increases in hospital costs; coronary events, cerebrovascular events, and heart failure were the most costly, at more than Int$1,800, Int$3,000, and Int$4,000 in Asia, Eastern Europe, and Established Market Economies, respectively.

          Conclusions

          Major complications of diabetes significantly increase hospital use and costs across various settings and are likely to impose a high economic burden on health care systems.

          Please see later in the article for the Editors' Summary

          Editors' Summary

          Background

          Worldwide, nearly 250 million people have diabetes, and this number is increasing rapidly. Diabetes is characterized by dangerous amounts of sugar (glucose) in the blood. Blood sugar levels are normally controlled by insulin, a hormone produced by the pancreas. Blood sugar control fails in people with diabetes because they make no insulin (type 1 diabetes) or, more commonly, because the fat and muscle cells that usually respond to insulin by removing excess sugar from the blood have become insulin insensitive (type 2 diabetes). Type 2 diabetes can be prevented and controlled by eating a healthy diet and exercising regularly. It can also be treated with drugs that help the pancreas make more insulin or that increase insulin sensitivity. Major long-term complications of diabetes include kidney failure and an increased risk of cardiovascular problems such as heart attacks, heart failure, stroke, and problems with the blood vessels in the arms and legs. Because of these complications, the life expectancy of people with diabetes is about ten years shorter than that of people without diabetes.

          Why Was This Study Done?

          Diabetes imposes considerable demands on health care systems but little is known about the direct medical costs associated with treating this chronic disease in low- and middle-income countries where more than three-quarters of affected people live. In particular, although estimates have been made of the overall resources devoted to the treatment of diabetes, very little is known about how the different long-term complications of diabetes contribute to health care costs in different countries. Public-health experts and governments need this information to help them design effective and sustainable policies for the prevention and treatment of diabetes. In this study, the researchers estimate the resource use associated with diabetes-related complications in three economic regions using information collected in the Action in Diabetes and Vascular Disease (ADVANCE) study. This multinational clinical trial is investigating how drugs that control blood pressure and blood sugar levels affect the long-term complications of diabetes.

          What Did the Researchers Do and Find?

          The researchers recorded diabetes-related complications, hospital admissions for these complications, and length of hospital stays in 11,140 patients with severe diabetes from 20 countries who participated in the ADVANCE study. They used “multiple regression analysis” to estimate the number of days spent in hospital for diabetes-related complications in Asia, Eastern Europe, and the Established Market Economies (Canada, Australia, New Zealand, and several Western European countries). Finally, they calculated the economic costs of each complication using regional estimates of the costs per bed-day from the World Health Organization's CHOICE project (CHOosing Interventions that are Cost Effective). Nearly everyone in the study who developed heart failure attended a hospital, but only 15%–26% of people attended a hospital for kidney problems. The chances of hospitalization for any complication were lowest in Asia and highest in the Established Market Economies; conversely, lengths of stay were longest in Asia and shortest in the Established Market Economies. Finally, the estimated annual hospital costs for patients who had a coronary event, stroke, or heart failure were more than Int$1,800, Int$3,000, and Int$4,000 in Asia, Eastern Europe, and the Established Market Economies, respectively (the international dollar, Int$, is a hypothetical currency that has the same purchasing power in all countries), compared to Int$76, Int$156, and Int$296 for patients who experienced none of these events.

          What Do These Findings Mean?

          Because the ADVANCE trial had strict entry criteria, the findings of this study may not be generalizable to the broader population of people with diabetes. Nevertheless, given the lack of information about the costs associated with diabetes-related complications in low- and middle-income countries, these findings provide important new information about the patterns of hospital resource use and costs in these countries. Specifically, these findings show that the major complications of diabetes greatly increase hospital use and costs in all three economic regions considered and impose a high economic burden on health care systems that is likely to increase as the diabetes epidemic develops. Importantly, these findings should help policy makers anticipate the future health care costs associated with diabetes and should help them evaluate which therapies aimed at preventing diabetes-related complications will reduce these costs most effectively.

          Additional Information

          Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000236.

          • The International Diabetes Federation provides information about all aspects of diabetes

          • The US National Diabetes Information Clearinghouse provides detailed information about diabetes for patients, health care professionals, and the general public (in English and Spanish)

          • The UK National Health Service also provides information for patients and caregivers about type 2 diabetes (in several languages)

          • Information about the ADVANCE study is available

          • The World Health Organization's CHOICE Web site provides information about the analysis of the cost effectiveness of health care interventions

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.

          The goal of this study was to estimate the prevalence of diabetes and the number of people of all ages with diabetes for years 2000 and 2030. Data on diabetes prevalence by age and sex from a limited number of countries were extrapolated to all 191 World Health Organization member states and applied to United Nations' population estimates for 2000 and 2030. Urban and rural populations were considered separately for developing countries. The prevalence of diabetes for all age-groups worldwide was estimated to be 2.8% in 2000 and 4.4% in 2030. The total number of people with diabetes is projected to rise from 171 million in 2000 to 366 million in 2030. The prevalence of diabetes is higher in men than women, but there are more women with diabetes than men. The urban population in developing countries is projected to double between 2000 and 2030. The most important demographic change to diabetes prevalence across the world appears to be the increase in the proportion of people >65 years of age. These findings indicate that the "diabetes epidemic" will continue even if levels of obesity remain constant. Given the increasing prevalence of obesity, it is likely that these figures provide an underestimate of future diabetes prevalence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Economic costs of diabetes in the U.S. In 2007.

            (2008)
            The prevalence of diabetes continues to grow, with the number of people in the U.S. with diagnosed diabetes now reaching 17.5 million. The objectives of this study are to quantify the economic burden of diabetes caused by increased health resource use and lost productivity, and to provide a detailed breakdown of the costs attributed to diabetes. This study uses a prevalence-based approach that combines the demographics of the population in 2007 with diabetes prevalence rates and other epidemiological data, health care costs, and economic data into a Cost of Diabetes Model. Health resource use and associated medical costs are analyzed by age, sex, type of medical condition, and health resource category. Data sources include national surveys and claims databases, as well as a proprietary database that contains annual medical claims for 16.3 million people in 2006. The total estimated cost of diabetes in 2007 is $174 billion, including $116 billion in excess medical expenditures and $58 billion in reduced national productivity. Medical costs attributed to diabetes include $27 billion for care to directly treat diabetes, $58 billion to treat the portion of diabetes-related chronic complications that are attributed to diabetes, and $31 billon in excess general medical costs. The largest components of medical expenditures attributed to diabetes are hospital inpatient care (50% of total cost), diabetes medication and supplies (12%), retail prescriptions to treat complications of diabetes (11%), and physician office visits (9%). People with diagnosed diabetes incur average expenditures of $11,744 per year, of which $6,649 is attributed to diabetes. People with diagnosed diabetes, on average, have medical expenditures that are approximately 2.3 times higher than what expenditures would be in the absence of diabetes. For the cost categories analyzed, approximately $1 in $5 health care dollars in the U.S. is spent caring for someone with diagnosed diabetes, while approximately $1 in $10 health care dollars is attributed to diabetes. Indirect costs include increased absenteeism ($2.6 billion) and reduced productivity while at work ($20.0 billion) for the employed population, reduced productivity for those not in the labor force ($0.8 billion), unemployment from disease-related disability ($7.9 billion), and lost productive capacity due to early mortality ($26.9 billion). The actual national burden of diabetes is likely to exceed the $174 billion estimate because it omits the social cost of intangibles such as pain and suffering, care provided by nonpaid caregivers, excess medical costs associated with undiagnosed diabetes, and diabetes-attributed costs for health care expenditures categories omitted from this study. Omitted from this analysis are expenditure categories such as health care system administrative costs, over-the-counter medications, clinician training programs, and research and infrastructure development. The burden of diabetes is imposed on all sectors of society-higher insurance premiums paid by employees and employers, reduced earnings through productivity loss, and reduced overall quality of life for people with diabetes and their families and friends.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lifetime risk for diabetes mellitus in the United States.

              Although diabetes mellitus is one of the most prevalent and costly chronic diseases in the United States, no estimates have been published of individuals' average lifetime risk of developing diabetes. To estimate age-, sex-, and race/ethnicity-specific lifetime risk of diabetes in the cohort born in 2000 in the United States. Data from the National Health Interview Survey (1984-2000) were used to estimate age-, sex-, and race/ethnicity-specific prevalence and incidence in 2000. US Census Bureau data and data from a previous study of diabetes as a cause of death were used to estimate age-, sex-, and race/ethnicity-specific mortality rates for diabetic and nondiabetic populations. Residual (remaining) lifetime risk of diabetes (from birth to 80 years in 1-year intervals), duration with diabetes, and life-years and quality-adjusted life-years lost from diabetes. The estimated lifetime risk of developing diabetes for individuals born in 2000 is 32.8% for males and 38.5% for females. Females have higher residual lifetime risks at all ages. The highest estimated lifetime risk for diabetes is among Hispanics (males, 45.4% and females, 52.5%). Individuals diagnosed as having diabetes have large reductions in life expectancy. For example, we estimate that if an individual is diagnosed at age 40 years, men will lose 11.6 life-years and 18.6 quality-adjusted life-years and women will lose 14.3 life-years and 22.0 quality-adjusted life-years. For individuals born in the United States in 2000, the lifetime probability of being diagnosed with diabetes mellitus is substantial. Primary prevention of diabetes and its complications are important public health priorities.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                February 2010
                February 2010
                23 February 2010
                : 7
                : 2
                : e1000236
                Affiliations
                [1 ]School of Public Health, University of Sydney, Sydney, Australia
                [2 ]Department of Primary Care, University of Oxford, Oxford, United Kingdom
                [3 ]George Institute for International Health, University of Sydney, Sydney, Australia
                [4 ]Department of Physiology, University of Melbourne, Melbourne, Australia
                [5 ]Department of Global Health and Population, Harvard School of Public Health, Boston, Massachusetts, United States of America
                Lund University Hospital, Sweden
                Author notes

                ICMJE criteria for authorship read and met: PMC PG AP JC MW SBH JAS. Agree with the manuscript's results and conclusions: PMC PG AP JC MW SBH JAS. Designed the experiments/the study: PG JC MW SBH. Analyzed the data: PMC PG JAS. Collected data/did experiments for the study: AP. Wrote the first draft of the paper: PMC JAS. Contributed to the writing of the paper: PG AP JC MW SBH. Developed the model: PMC. Co-Chief investigator for the main ADVANCE study: JC. Contributed to the planning of the analyses and to the interpretation and drafting of this report: JC. Contributed to model development and revision: JAS. Created the cost calculator accompanying the paper: JAS.

                Article
                09-PLME-RA-1909R3
                10.1371/journal.pmed.1000236
                2826379
                20186272
                ad4931fa-aedd-46b1-9795-5c69f7b651b5
                Clarke et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 July 2009
                : 20 January 2010
                Page count
                Pages: 10
                Categories
                Research Article
                Cardiovascular Disorders
                Cardiovascular Disorders/Coronary Artery Disease
                Cardiovascular Disorders/Heart Failure
                Cardiovascular Disorders/Myocardial Infarction
                Cardiovascular Disorders/Peripheral Vascular Disease
                Diabetes and Endocrinology
                Diabetes and Endocrinology/Type 2 Diabetes
                Nephrology
                Public Health and Epidemiology/Epidemiology
                Public Health and Epidemiology/Global Health
                Public Health and Epidemiology/Health Policy
                Public Health and Epidemiology/Health Services Research and Economics

                Medicine
                Medicine

                Comments

                Comment on this article