26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brd4 binds to active enhancers to control cell identity gene induction in adipogenesis and myogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The epigenomic reader Brd4 is an important drug target for cancers. However, its role in cell differentiation and animal development remains largely unclear. Using two conditional knockout mouse strains and derived cells, we demonstrate that Brd4 controls cell identity gene induction and is essential for adipogenesis and myogenesis. Brd4 co-localizes with lineage-determining transcription factors (LDTFs) on active enhancers during differentiation. LDTFs coordinate with H3K4 mono-methyltransferases MLL3/MLL4 (KMT2C/KMT2D) and H3K27 acetyltransferases CBP/p300 to recruit Brd4 to enhancers activated during differentiation. Brd4 deletion prevents the enrichment of Mediator and RNA polymerase II transcription machinery, but not that of LDTFs, MLL3/MLL4-mediated H3K4me1, and CBP/p300-mediated H3K27ac, on enhancers. Consequently, Brd4 deletion prevents enhancer RNA production, cell identity gene induction and cell differentiation. Interestingly, Brd4 is dispensable for maintaining cell identity genes in differentiated cells. These findings identify Brd4 as an enhancer epigenomic reader that links active enhancers with cell identity gene induction in differentiation.

          Abstract

          Despite being an important cancer drug target, the role of epigenetic reader Brd4 in cell differentiation and development remains unclear. Here, the authors provide evidence that Brd4 plays an important role in adipogenesis and myogenesis by binding to active enhancers to regulate gene expression.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          ChIP-seq accurately predicts tissue-specific activity of enhancers.

          A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover because they are scattered among the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here we present the results of chromatin immunoprecipitation with the enhancer-associated protein p300 followed by massively parallel sequencing, and map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases demonstrated reproducible enhancer activity in the tissues that were predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities, and suggest that such data sets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A clustering approach for identification of enriched domains from histone modification ChIP-Seq data.

            Chromatin states are the key to gene regulation and cell identity. Chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing (ChIP-Seq) is increasingly being used to map epigenetic states across genomes of diverse species. Chromatin modification profiles are frequently noisy and diffuse, spanning regions ranging from several nucleosomes to large domains of multiple genes. Much of the early work on the identification of ChIP-enriched regions for ChIP-Seq data has focused on identifying localized regions, such as transcription factor binding sites. Bioinformatic tools to identify diffuse domains of ChIP-enriched regions have been lacking. Based on the biological observation that histone modifications tend to cluster to form domains, we present a method that identifies spatial clusters of signals unlikely to appear by chance. This method pools together enrichment information from neighboring nucleosomes to increase sensitivity and specificity. By using genomic-scale analysis, as well as the examination of loci with validated epigenetic states, we demonstrate that this method outperforms existing methods in the identification of ChIP-enriched signals for histone modification profiles. We demonstrate the application of this unbiased method in important issues in ChIP-Seq data analysis, such as data normalization for quantitative comparison of levels of epigenetic modifications across cell types and growth conditions. http://home.gwu.edu/ approximately wpeng/Software.htm. Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The selection and function of cell type-specific enhancers.

              The human body contains several hundred cell types, all of which share the same genome. In metazoans, much of the regulatory code that drives cell type-specific gene expression is located in distal elements called enhancers. Although mammalian genomes contain millions of potential enhancers, only a small subset of them is active in a given cell type. Cell type-specific enhancer selection involves the binding of lineage-determining transcription factors that prime enhancers. Signal-dependent transcription factors bind to primed enhancers, which enables these broadly expressed factors to regulate gene expression in a cell type-specific manner. The expression of genes that specify cell type identity and function is associated with densely spaced clusters of active enhancers known as super-enhancers. The functions of enhancers and super-enhancers are influenced by, and affect, higher-order genomic organization.
                Bookmark

                Author and article information

                Contributors
                kai.ge@nih.gov
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                20 December 2017
                20 December 2017
                2017
                : 8
                : 2217
                Affiliations
                [1 ]ISNI 0000 0001 2297 5165, GRID grid.94365.3d, Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, , National Institutes of Health, ; Bethesda, MD 20892 USA
                [2 ]ISNI 0000 0004 1936 9510, GRID grid.253615.6, Departments of Physics and Anatomy and Regenerative Biology, , The George Washington University, ; Washington, DC 20052 USA
                [3 ]ISNI 0000 0001 2297 5165, GRID grid.94365.3d, Program in Genomics of Differentiation, National Institute of Child Health and Human Development, , National Institutes of Health, ; Bethesda, MD 20892 USA
                Author information
                http://orcid.org/0000-0002-3768-7016
                http://orcid.org/0000-0002-7442-5138
                Article
                2403
                10.1038/s41467-017-02403-5
                5738375
                29263365
                aeb10c7d-31c3-4361-ad8b-1ab67e829101
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 July 2017
                : 28 November 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article