13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Post Ischemia-Reperfusion Treatment with Trimetazidine on Renal Injury in Rats: Insights on Delayed Renal Fibrosis Progression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Even after recovery from acute kidney injury, glomeruli remain vulnerable to further injury by way of interstitial fibrosis. This study is aimed at elucidating the effects of post ischemia-reperfusion (I/R) treatment with trimetazidine on the progression to renal fibrosis as well as short- and intermediate-term aspects. Trimetazidine 3 mg/kg or 0.9% saline was given intraperitoneally once upon reperfusion or daily thereafter for 5 d or 8 w. Renal histologic changes and related signaling proteins were assessed. After 24 h, post I/R treatment with trimetazidine significantly reduced serum blood urea nitrogen and creatinine levels and tubular injury accompanied with upregulation of hypoxia-inducible factor- (HIF-) 1 α, vascular endothelial growth factor (VEGF), and Bcl-2 expression. After 5 d, post I/R treatment with trimetazidine reduced renal tubular cell necrosis and apoptosis with upregulation of HIF-1 α-VEGF and tissue inhibitors of metalloproteinase activities, attenuation of matrix metalloproteinase activities, and alteration of the ratio of Bax to Bcl-2 levels. After 8 w, however, post I/R treatment with trimetazidine did not modify the progression of renal fibrosis. In conclusion, post I/R treatment with trimetazidine allows ischemic kidneys to regain renal function and structure more rapidly compared to nontreated kidneys, but not enough to resolute renal fibrosis in long-term aspect.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Acute kidney injury, mortality, length of stay, and costs in hospitalized patients.

          The marginal effects of acute kidney injury on in-hospital mortality, length of stay (LOS), and costs have not been well described. A consecutive sample of 19,982 adults who were admitted to an urban academic medical center, including 9210 who had two or more serum creatinine (SCr) determinations, was evaluated. The presence and degree of acute kidney injury were assessed using absolute and relative increases from baseline to peak SCr concentration during hospitalization. Large increases in SCr concentration were relatively rare (e.g., >or=2.0 mg/dl in 105 [1%] patients), whereas more modest increases in SCr were common (e.g., >or=0.5 mg/dl in 1237 [13%] patients). Modest changes in SCr were significantly associated with mortality, LOS, and costs, even after adjustment for age, gender, admission International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis, severity of illness (diagnosis-related group weight), and chronic kidney disease. For example, an increase in SCr >or=0.5 mg/dl was associated with a 6.5-fold (95% confidence interval 5.0 to 8.5) increase in the odds of death, a 3.5-d increase in LOS, and nearly 7500 dollars in excess hospital costs. Acute kidney injury is associated with significantly increased mortality, LOS, and costs across a broad spectrum of conditions. Moreover, outcomes are related directly to the severity of acute kidney injury, whether characterized by nominal or percentage changes in serum creatinine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mediators of Inflammation in Acute Kidney Injury

            Acute kidney injury (AKI) remains to be an independent risk factor for mortality and morbidity. Inflammation is now believed to play a major role in the pathopathophysiology of AKI. It is hypothesized that in ischemia, sepsis and nephrotoxic models that the initial insult results in morphological and/or functional changes in vascular endothelial cells and/or in tubular epithelium. Then, leukocytes including neutrophils, macrophages, natural killer cells, and lymphocytes infiltrate into the injured kidneys. The injury induces the generation of inflammatory mediators like cytokines and chemokines by tubular and endothelial cells which contribute to the recruiting of leukocytes into the kidneys. Thus, inflammation has an important role in the initiation and extension phases of AKI. This review will focus on the mediators of inflammation contributing to the pathogenesis of AKI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.

              Trimetazidine is a clinically effective antianginal agent that has no negative inotropic or vasodilator properties. Although it is thought to have direct cytoprotective actions on the myocardium, the mechanism(s) by which this occurs is as yet undefined. In this study, we determined what effects trimetazidine has on both fatty acid and glucose metabolism in isolated working rat hearts and on the activities of various enzymes involved in fatty acid oxidation. Hearts were perfused with Krebs-Henseleit solution containing 100 microU/mL insulin, 3% albumin, 5 mmol/L glucose, and fatty acids of different chain lengths. Both glucose and fatty acids were appropriately radiolabeled with either (3)H or (14)C for measurement of glycolysis, glucose oxidation, and fatty acid oxidation. Trimetazidine had no effect on myocardial oxygen consumption or cardiac work under any aerobic perfusion condition used. In hearts perfused with 5 mmol/L glucose and 0.4 mmol/L palmitate, trimetazidine decreased the rate of palmitate oxidation from 488+/-24 to 408+/-15 nmol x g dry weight(-1) x minute(-1) (P<0.05), whereas it increased rates of glucose oxidation from 1889+/-119 to 2378+/-166 nmol x g dry weight(-1) x minute(-1) (P<0.05). In hearts subjected to low-flow ischemia, trimetazidine resulted in a 210% increase in glucose oxidation rates. In both aerobic and ischemic hearts, glycolytic rates were unaltered by trimetazidine. The effects of trimetazidine on glucose oxidation were accompanied by a 37% increase in the active form of pyruvate dehydrogenase, the rate-limiting enzyme for glucose oxidation. No effect of trimetazidine was observed on glycolysis, glucose oxidation, fatty acid oxidation, or active pyruvate dehydrogenase when palmitate was substituted with 0.8 mmol/L octanoate or 1.6 mmol/L butyrate, suggesting that trimetazidine directly inhibits long-chain fatty acid oxidation. This reduction in fatty acid oxidation was accompanied by a significant decrease in the activity of the long-chain isoform of the last enzyme involved in fatty acid beta-oxidation, 3-ketoacyl coenzyme A (CoA) thiolase activity (IC(50) of 75 nmol/L). In contrast, concentrations of trimetazidine in excess of 10 and 100 micromol/L were needed to inhibit the medium- and short-chain forms of 3-ketoacyl CoA thiolase, respectively. Previous studies have shown that inhibition of fatty acid oxidation and stimulation of glucose oxidation can protect the ischemic heart. Therefore, our data suggest that the antianginal effects of trimetazidine may occur because of an inhibition of long-chain 3-ketoacyl CoA thiolase activity, which results in a reduction in fatty acid oxidation and a stimulation of glucose oxidation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2018
                2 July 2018
                : 2018
                : 1072805
                Affiliations
                1Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
                2Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
                3Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
                4Department of Pathology, CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
                Author notes

                Academic Editor: Ada Popolo

                Author information
                http://orcid.org/0000-0002-2984-9927
                Article
                10.1155/2018/1072805
                6051050
                30057668
                b79d21c1-5197-4318-b6e4-2d1d8b4a1253
                Copyright © 2018 Jin Ha Park et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 January 2018
                : 16 May 2018
                Funding
                Funded by: Yonsei University College of Medicine
                Award ID: 6-2015-0071
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article