42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biological effective doses in the intracavitary high dose rate brachytherapy of cervical cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The aim of this study is to evaluate the decrease of biological equivalent dose and its correlation with local/loco-regional control of tumour in the treatment of cervical cancer when the strength of the Ir-192 high dose rate (HDR) brachytherapy (BT) source is reduced to single, double and triple half life in relation to original strength of 10 Ci (∼ 4.081 cGy x m 2 x h −1).

          Material and methods

          A retrospective study was carried out on 52 cervical cancer patients with stage II and III treated with fractionated HDR-BT following external beam radiation therapy (EBRT). International Commission on Radiation Units and Measurement (ICRU) points were defined according to ICRU Report 38, using two orthogonal radiograph images taken by Simulator (Simulix HQ). Biologically effective dose (BED) was calculated at point A for different Ir-192 source strength and its possible correlation with local/loco-regional tumour control was discussed.

          Result

          The increase of treatment time per fraction of dose due to the fall of dose rate especially in HDR-BT of cervical cancer results in reduction in BED of 2.59%, 7.02% and 13.68% with single, double and triple half life reduction of source strength, respectively. The probabilities of disease recurrence (local/loco-regional) within 26 months are expected as 0.12, 0.12, 0.16, 0.39 and 0.80 for source strength of 4.081, 2.041, 1.020, 0.510 and 0.347 cGy x m 2 x h −1, respectively. The percentages of dose increase required to maintain the same BED with respect to initial BED were estimated as 1.71, 5.00, 11.00 and 15.86 for the dose rate of 24.7, 12.4, 6.2 and 4.2 Gy/hr at point A, respectively.

          Conclusions

          This retrospective study of cervical cancer patients treated with HDR-BT at different Ir-192 source strength shows reduction in disease free survival according to the increase in treatment time duration per fraction. The probable result could be associated with the decrease of biological equivalent dose to point A. Clinical end point of this study is more significant from double half life reduction of original source strength.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: not found
          • Article: not found

          The linear-quadratic formula and progress in fractionated radiotherapy.

          J. Fowler (1989)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy.

            The linear-quadratic (LQ) dose-effect formalism is currently providing new perspectives into the ways in which alterations in the dose per fraction in conventional radiotherapy may be used to bring about improved results with respect to early or late normal tissue reactions. In this paper, using a model initially developed by Roesch, the LQ equations are explored further in terms of dose-rate rather than dose. By the incorporation of one other parameter, mu, which relates to the rate of repair of sub-lethal radiation damage, a more general formalism is obtained. In particular, equations are derived which can be used to examine the relative effectiveness of different treatment regimes, including those involving decaying sources. Such equations are of wider applicability than other LQ derivations which relate only to dose-response relationships. The extended equations, which are fully consistent with the existing LQ method, are also shown to lead directly to other independently established, relationships for protracted irradiation. The nature of the link between high and low dose-rate treatments is discussed, and some worked examples provide indications of how the new equations may be used to assess further the potential clinical benefits of low dose-rate treatments and permanent implants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dose-effect relationship for local control of cervical cancer by magnetic resonance image-guided brachytherapy.

              To analyse dose-response relationships for local control of cervical cancer after MR image-guided brachytherapy (IGBT) based on dose-volume histogram parameters. The analysis includes 141 patients with cervix cancer (stages IB-IVA) treated with 45-50.4 Gy EBRT+/-cisplatin plus 4 x 7 Gy IGBT. Gross tumour volume (GTV), high risk clinical target volume (HR CTV) and intermediate risk CTV (IR CTV) were delineated and DVH parameters (D90, D100) were assessed. Doses were converted to the equivalent dose in 2 Gy (EQD2) using linear-quadratic model (alpha/beta=10 Gy). Groups of patients were formed according to tumour size at diagnosis (GTV(D)) of 2-5 cm (group 1) or >5 cm (2), with subgroups of the latter for HR CTV size at first IGBT 2-5 cm (2a) or >5 cm (2b). Dose-response dependence for local recurrence was evaluated by logit analysis. Eighteen local recurrences in the true pelvis were observed. Dose-response analyses revealed a significant effect of HR CTV D100 (p=0.02) and D90 (p=0.005). The ED50-values for tumour control were 33+/-15 Gy (D100) and 45+/-19 Gy (D90). ED90-values were 67 Gy (95% confidence interval [50;104]) and 86 Gy [77;113], respectively. A significant dependence of local control on D100 and D90 for HR CTV was found. Tumour control rates of >90% can be expected at doses >67 Gy and 86 Gy, respectively.
                Bookmark

                Author and article information

                Journal
                J Contemp Brachytherapy
                J Contemp Brachytherapy
                JCB
                Journal of Contemporary Brachytherapy
                Termedia Publishing House
                1689-832X
                2081-2841
                30 December 2011
                December 2011
                : 3
                : 4
                : 188-192
                Affiliations
                Department of Radiotherapy, Regional Cancer Centre, Regional Institute of Medical Sciences, Imphal, India
                Author notes
                Address for correspondence: B. Arunkumar Sharma, PhD, Department of Radiotherapy, Regional Cancer Centre, Regional Institute of Medical Sciences, Imphal 795 004, India. phone +919863055304. e-mail: arunsb2000@ 123456yahoo.co.uk
                Article
                17923
                10.5114/jcb.2011.26469
                3551365
                23346127
                ba0ddf6c-d761-4e9d-8446-acb0351732d0
                Copyright © 2011 Termedia

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 September 2011
                : 24 November 2011
                : 02 December 2011
                Categories
                Original Article

                Oncology & Radiotherapy
                cervical cancer,hdr brachytherapy,dose rate,biological effective dose
                Oncology & Radiotherapy
                cervical cancer, hdr brachytherapy, dose rate, biological effective dose

                Comments

                Comment on this article