335
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transmitted/Founder and Chronic Subtype C HIV-1 Use CD4 and CCR5 Receptors with Equal Efficiency and Are Not Inhibited by Blocking the Integrin α4β7

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sexual transmission of human immunodeficiency virus type 1 (HIV-1) most often results from productive infection by a single transmitted/founder (T/F) virus, indicating a stringent mucosal bottleneck. Understanding the viral traits that overcome this bottleneck could have important implications for HIV-1 vaccine design and other prevention strategies. Most T/F viruses use CCR5 to infect target cells and some encode envelope glycoproteins (Envs) that contain fewer potential N-linked glycosylation sites and shorter V1/V2 variable loops than Envs from chronic viruses. Moreover, it has been reported that the gp120 subunits of certain transmitted Envs bind to the gut-homing integrin α4β7, possibly enhancing virus entry and cell-to-cell spread. Here we sought to determine whether subtype C T/F viruses, which are responsible for the majority of new HIV-1 infections worldwide, share biological properties that increase their transmission fitness, including preferential α4β7 engagement. Using single genome amplification, we generated panels of both T/F (n = 20) and chronic (n = 20) Env constructs as well as full-length T/F (n = 6) and chronic (n = 4) infectious molecular clones (IMCs). We found that T/F and chronic control Envs were indistinguishable in the efficiency with which they used CD4 and CCR5. Both groups of Envs also exhibited the same CD4+ T cell subset tropism and showed similar sensitivity to neutralization by CD4 binding site (CD4bs) antibodies. Finally, saturating concentrations of anti-α4β7 antibodies failed to inhibit infection and replication of T/F as well as chronic control viruses, although the growth of the tissue culture-adapted strain SF162 was modestly impaired. These results indicate that the population bottleneck associated with mucosal HIV-1 acquisition is not due to the selection of T/F viruses that use α4β7, CD4 or CCR5 more efficiently.

          Author Summary

          Most new HIV-1 infections worldwide are caused by the sexual transmission of subtype C viruses, which are prevalent in Asia and southern Africa. While chronically infected individuals harbor a genetically diverse set of viruses, most new infections are established by single variants, termed transmitted/founder (T/F) viruses. This raises the question whether certain viral variants have particular properties allowing them to more efficiently overcome the transmission bottleneck. Preferential binding of the viral envelope (Env) to the integrin α4β7 has been hypothesized as one important feature of transmitted viruses. Here, we compared Envs from subtype C viruses that were transmitted to those that were prevalent in chronic infections for efficiency in utilizing α4β7, CD4 and CCR5 for cell entry and replication. We found that transmitted and chronic Envs engaged CD4 and CCR5 with equal efficiency, and that blocking the interaction between Env and α4β7 failed to inhibit replication of T/F as well as control viruses. While the search for determinants of transmission fitness remains an important goal, preferential CD4, CCR5 or α4β7 interactions do not appear to represent distinguishing features of T/F viruses.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection

          Identification of the transmitted/founder virus makes possible, for the first time, a genome-wide analysis of host immune responses against the infecting HIV-1 proteome. A complete dissection was made of the primary HIV-1–specific T cell response induced in three acutely infected patients. Cellular assays, together with new algorithms which identify sites of positive selection in the virus genome, showed that primary HIV-1–specific T cells rapidly select escape mutations concurrent with falling virus load in acute infection. Kinetic analysis and mathematical modeling of virus immune escape showed that the contribution of CD8 T cell–mediated killing of productively infected cells was earlier and much greater than previously recognized and that it contributed to the initial decline of plasma virus in acute infection. After virus escape, these first T cell responses often rapidly waned, leaving or being succeeded by T cell responses to epitopes which escaped more slowly or were invariant. These latter responses are likely to be important in maintaining the already established virus set point. In addition to mutations selected by T cells, there were other selected regions that accrued mutations more gradually but were not associated with a T cell response. These included clusters of mutations in envelope that were targeted by NAbs, a few isolated sites that reverted to the consensus sequence, and bystander mutations in linkage with T cell–driven escape.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing.

            Accurate identification of the transmitted virus and sequences evolving from it could be instrumental in elucidating the transmission of human immunodeficiency virus type 1 (HIV-1) and in developing vaccines, drugs, or microbicides to prevent infection. Here we describe an experimental approach to analyze HIV-1 env genes as intact genetic units amplified from plasma virion RNA by single-genome amplification (SGA), followed by direct sequencing of uncloned DNA amplicons. We show that this strategy precludes in vitro artifacts caused by Taq-induced nucleotide substitutions and template switching, provides an accurate representation of the env quasispecies in vivo, and has an overall error rate (including nucleotide misincorporation, insertion, and deletion) of less than 8 x 10(-5). Applying this method to the analysis of virus in plasma from 12 Zambian subjects from whom samples were obtained within 3 months of seroconversion, we show that transmitted or early founder viruses can be identified and that molecular pathways and rates of early env diversification can be defined. Specifically, we show that 8 of the 12 subjects were each infected by a single virus, while 4 others acquired more than one virus; that the rate of virus evolution in one subject during an 80-day period spanning seroconversion was 1.7 x 10(-5) substitutions per site per day; and that evidence of strong immunologic selection can be seen in Env and overlapping Rev sequences based on nonrandom accumulation of nonsynonymous mutations. We also compared the results of the SGA approach with those of more-conventional bulk PCR amplification methods performed on the same patient samples and found that the latter is associated with excessive rates of Taq-induced recombination, nucleotide misincorporation, template resampling, and cloning bias. These findings indicate that HIV-1 env genes, other viral genes, and even full-length viral genomes responsible for productive clinical infection can be identified by SGA analysis of plasma virus sampled at intervals typical in large-scale vaccine trials and that pathways of viral diversification and immune escape can be determined accurately.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding.

              The study of early events in the human immunodeficiency virus type 1 (HIV-1) life cycle can be limited by the relatively low numbers of cells that can be infected synchronously in vitro. Although the efficiency of HIV-1 infection can be substantially improved by centrifugal inoculation (spinoculation or shell vial methods), the underlying mechanism of enhancement has not been defined. To understand spinoculation in greater detail, we have used real-time PCR to quantitate viral particles in suspension, virions that associate with cells, and the ability of those virions to give rise to reverse transcripts. We report that centrifugation of HIV-1(IIIB) virions at 1,200 x g for 2 h at 25 degrees C increases the number of particles that bind to CEM-SS T-cell targets by approximately 40-fold relative to inoculation by simple virus-cell mixing. Following subsequent incubation at 37 degrees C for 5 h to allow membrane fusion and uncoating to occur, the number of reverse transcripts per target cell was similarly enhanced. Indeed, by culturing spinoculated samples for 24 h, approximately 100% of the target cells were reproducibly shown to be productively infected, as judged by the expression of p24(gag). Because the modest g forces employed in this procedure were found to be capable of sedimenting viral particles and because CD4-specific antibodies were effective at blocking virus binding, we propose that spinoculation works by depositing virions on the surfaces of target cells and that diffusion is the major rate-limiting step for viral adsorption under routine in vitro pulsing conditions. Thus, techniques that accelerate the binding of viruses to target cells not only promise to facilitate the experimental investigation of postentry steps of HIV-1 infection but should also help to enhance the efficacy of virus-based genetic therapies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2012
                May 2012
                31 May 2012
                : 8
                : 5
                : e1002686
                Affiliations
                [1 ]Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
                [2 ]Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
                [3 ]Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
                [4 ]Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
                [5 ]Donation Testing Department, South African National Blood Service, Roodepoort, Gauteng, South Africa
                [6 ]Department of General Medical Sciences, Center for Proteomics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
                [7 ]Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, United States of America
                [8 ]Blood Systems Research Institute, San Francisco, California, United States of America
                [9 ]Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
                [10 ]Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
                [11 ]Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
                University of Zurich, Switzerland
                Author notes

                Conceived and designed the experiments: NFP CBW GMS BHH RWD. Performed the experiments: NFP CBW JMP JMD LBB SSI JFS-G MGS EHP AB JH BH AK SY. Analyzed the data: NFP CBW JMD LBB SSI JFS-G MGS EHP AB JH BH AK SY. Contributed reagents/materials/analysis tools: TM CC MV HD CO JCT SRP JCK MRB MPB FG DM BFH. Wrote the paper: NFP CBW GMS BHH RWD.

                Article
                PPATHOGENS-D-12-00312
                10.1371/journal.ppat.1002686
                3364951
                22693444
                d5154e2c-af03-4884-a73c-19a851477621
                Parrish et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 February 2012
                : 23 March 2012
                Page count
                Pages: 16
                Categories
                Research Article
                Biology
                Microbiology
                Virology
                Viral Transmission and Infection
                Viral Entry
                Immunodeficiency Viruses

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article