24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biosynthesis of silver and gold nanoparticles using Brevibacterium casei

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study demonstrates an unprecedented green process for the production of spherical-shaped Au and Ag nanoparticles synthesized and stabilized using a bacterium, Brevibacterium casei. Aqueous solutions of chloroaurate ions for Au and Ag(+) ions for silver were treated with B. casei biomass for the formation of Au nanoparticles (AuNP) and Ag nanoparticles (AgNP). The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 420 and 540 nm for Ag and Au nanoparticles, respectively. Transmission electron microscopy showed the formation of nanoparticles in the range of 10-50 nm (silver), and 10-50 nm (gold). XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. Further analysis carried out by Fourier Transform Infrared Spectroscopy (FTIR), provides evidence for the presence of proteins as possible biomolecules responsible for the reduction and capping agent which helps in increasing the stability of the synthesized silver and gold nanoparticles. The biological activities of the synthesized particles were confirmed based on their stable anti-coagulant effects. The use of bacterium for nanoparticles synthesis offers the benefits of ecofriendliness and amenability for large-scale production.

          Related collections

          Author and article information

          Journal
          Colloids and Surfaces B: Biointerfaces
          Colloids and Surfaces B: Biointerfaces
          Elsevier BV
          09277765
          June 2010
          June 2010
          : 77
          : 2
          : 257-262
          Article
          10.1016/j.colsurfb.2010.02.007
          20197229
          d8861b01-32ef-4589-b346-bb90ac7b4307
          © 2010

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article