171
views
1
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histone modifications have critical roles in regulating the expression of developmental genes during embryo development in mammals. However, genome-wide analyses of histone modifications in pre-implantation embryos have been impeded by the scarcity of the required materials. Here, by using a small-scale chromatin immunoprecipitation followed by sequencing (ChIP-seq) method, we map the genome-wide profiles of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3), which are associated with gene activation and repression, respectively, in mouse pre-implantation embryos. We find that the re-establishment of H3K4me3, especially on promoter regions, occurs much more rapidly than that of H3K27me3 following fertilization, which is consistent with the major wave of zygotic genome activation at the two-cell stage. Furthermore, H3K4me3 and H3K27me3 possess distinct features of sequence preference and dynamics in pre-implantation embryos. Although H3K4me3 modifications occur consistently at transcription start sites, the breadth of the H3K4me3 domain is a highly dynamic feature. Notably, the broad H3K4me3 domain (wider than 5 kb) is associated with higher transcription activity and cell identity not only in pre-implantation development but also in the process of deriving embryonic stem cells from the inner cell mass and trophoblast stem cells from the trophectoderm. Compared to embryonic stem cells, we found that the bivalency (that is, co-occurrence of H3K4me3 and H3K27me3) in early embryos is relatively infrequent and unstable. Taken together, our results provide a genome-wide map of H3K4me3 and H3K27me3 modifications in pre-implantation embryos, facilitating further exploration of the mechanism for epigenetic regulation in early embryos.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          A map of the cis-regulatory sequences in the mouse genome.

          The laboratory mouse is the most widely used mammalian model organism in biomedical research. The 2.6 × 10(9) bases of the mouse genome possess a high degree of conservation with the human genome, so a thorough annotation of the mouse genome will be of significant value to understanding the function of the human genome. So far, most of the functional sequences in the mouse genome have yet to be found, and the cis-regulatory sequences in particular are still poorly annotated. Comparative genomics has been a powerful tool for the discovery of these sequences, but on its own it cannot resolve their temporal and spatial functions. Recently, ChIP-Seq has been developed to identify cis-regulatory elements in the genomes of several organisms including humans, Drosophila melanogaster and Caenorhabditis elegans. Here we apply the same experimental approach to a diverse set of 19 tissues and cell types in the mouse to produce a map of nearly 300,000 murine cis-regulatory sequences. The annotated sequences add up to 11% of the mouse genome, and include more than 70% of conserved non-coding sequences. We define tissue-specific enhancers and identify potential transcription factors regulating gene expression in each tissue or cell type. Finally, we show that much of the mouse genome is organized into domains of coordinately regulated enhancers and promoters. Our results provide a resource for the annotation of functional elements in the mammalian genome and for the study of mechanisms regulating tissue-specific gene expression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome regulation by polycomb and trithorax proteins.

            Polycomb group (PcG) and trithorax group (trxG) proteins are critical regulators of numerous developmental genes. To silence or activate gene expression, respectively, PcG and trxG proteins bind to specific regions of DNA and direct the posttranslational modification of histones. Recent work suggests that PcG proteins regulate the nuclear organization of their target genes and that PcG-mediated gene silencing involves noncoding RNAs and the RNAi machinery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chromatin signatures of pluripotent cell lines.

              Epigenetic genome modifications are thought to be important for specifying the lineage and developmental stage of cells within a multicellular organism. Here, we show that the epigenetic profile of pluripotent embryonic stem cells (ES) is distinct from that of embryonic carcinoma cells, haematopoietic stem cells (HSC) and their differentiated progeny. Silent, lineage-specific genes replicated earlier in pluripotent cells than in tissue-specific stem cells or differentiated cells and had unexpectedly high levels of acetylated H3K9 and methylated H3K4. Unusually, in ES cells these markers of open chromatin were also combined with H3K27 trimethylation at some non-expressed genes. Thus, pluripotency of ES cells is characterized by a specific epigenetic profile where lineage-specific genes may be accessible but, if so, carry repressive H3K27 trimethylation modifications. H3K27 methylation is functionally important for preventing expression of these genes in ES cells as premature expression occurs in embryonic ectoderm development (Eed)-deficient ES cells. Our data suggest that lineage-specific genes are primed for expression in ES cells but are held in check by opposing chromatin modifications.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                1476-4687
                0028-0836
                Sep 14 2016
                : 537
                : 7621
                Affiliations
                [1 ] Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
                [2 ] Graduate School of Peking Union Medical College, Beijing 100730, China.
                [3 ] National Institute of Biological Sciences, NIBS, Beijing 102206, China.
                Article
                nature19362
                10.1038/nature19362
                27626379
                d9ea7717-3f0d-448a-af77-c057eaaf453e
                History

                Comments

                Comment on this article