54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme.

      Journal of Biological Engineering
      Springer Nature America, Inc
      Cytochrome P450, Chloroplasts, Protein engineering, Isopimaric acid, Diterpenoids

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant terpenoids are known for their diversity, stereochemical complexity, and their commercial interest as pharmaceuticals, food additives, and cosmetics. Developing biotechnology approaches for the production of these compounds in heterologous hosts can increase their market availability, reduce their cost, and provide sustainable production platforms. In this context, we aimed at producing the antimicrobial diterpenoid isopimaric acid from Sitka spruce. Isopimaric acid is synthesized using geranylgeranyl diphosphate as a precursor molecule that is cyclized by a diterpene synthase in the chloroplast and subsequently oxidized by a cytochrome P450, CYP720B4.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus.

          Transient gene expression is a fast, flexible and reproducible approach to high-level expression of useful proteins. In plants, recombinant strains of Agrobacterium tumefaciens can be used for transient expression of genes that have been inserted into the T-DNA region of the bacterial Ti plasmid. A bacterial culture is vacuum-infiltrated into leaves, and upon T-DNA transfer, there is ectopic expression of the gene of interest in the plant cells. However, the utility of the system is limited because the ectopic protein expression ceases after 2-3 days. Here, we show that post-transcriptional gene silencing (PTGS) is a major cause for this lack of efficiency. We describe a system based on co-expression of a viral-encoded suppressor of gene silencing, the p19 protein of tomato bushy stunt virus (TBSV), that prevents the onset of PTGS in the infiltrated tissues and allows high level of transient expression. Expression of a range of proteins was enhanced 50-folds or more in the presence of p19 so that protein purification could be achieved from as little as 100 mg of infiltrated leaf material. The effect of p19 was not saturated in cells that had received up to four individual T-DNAs and persisted until leaf senescence. Because of its simplicity and rapidity, we anticipate that the p19-enhanced expression system will have value in industrial production as well as a research tool for isolation and biochemical characterisation of a broad range of proteins without the need for the time-consuming regeneration of stably transformed plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Network analysis of the MVA and MEP pathways for isoprenoid synthesis.

            Isoprenoid biosynthesis is essential for all living organisms, and isoprenoids are also of industrial and agricultural interest. All isoprenoids are derived from prenyl diphosphate (prenyl-PP) precursors. Unlike isoprenoid biosynthesis in other living organisms, prenyl-PP, as the precursor of all isoprenoids in plants, is synthesized by two independent pathways: the mevalonate (MVA) pathway in the cytoplasm and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. This review focuses on progress in our understanding of how the precursors for isoprenoid biosynthesis are synthesized in the two subcellular compartments, how the underlying pathway gene networks are organized and regulated, and how network perturbations impact each pathway and plant development. Because of the wealth of data on isoprenoid biosynthesis, we emphasize research in Arabidopsis thaliana and compare the synthesis of isoprenoid precursor molecules in this model plant with their synthesis in other prokaryotic and eukaryotic organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biogenesis and homeostasis of chloroplasts and other plastids.

              Chloroplasts are the organelles that define plants, and they are responsible for photosynthesis as well as numerous other functions. They are the ancestral members of a family of organelles known as plastids. Plastids are remarkably dynamic, existing in strikingly different forms that interconvert in response to developmental or environmental cues. The genetic system of this organelle and its coordination with the nucleocytosolic system, the import and routing of nucleus-encoded proteins, as well as organellar division all contribute to the biogenesis and homeostasis of plastids. They are controlled by the ubiquitin-proteasome system, which is part of a network of regulatory mechanisms that integrate plastid development into broader programmes of cellular and organismal development.
                Bookmark

                Author and article information

                Journal
                26702299
                4688937
                10.1186/s13036-015-0022-z

                Cytochrome P450,Chloroplasts,Protein engineering,Isopimaric acid,Diterpenoids

                Comments

                Comment on this article